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Abstract: Simple and reliable algorithm for design optimization of microwave structures with Sonnet em is 
introduced. The presented methodology exploits coarse-discretization models of the structure of interest, 
starting from a very coarse grid, and gradually increasing the discretization density. Each model is 
optimized using a grid-search routine. The optimal design of the current model is used as an initial design 
for the finer-discretization one. Our methodology is computationally efficient as most of the operations are 
performed on coarse-discretization models. Two examples of microstrip filter design are given.  
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1. Introduction 
 
Due to the complexity of microwave structures and a growing demand for accuracy, theoretical models 

can only be used to yield initial designs that need to be further tuned to meet given performance 
specifications. Therefore, EM-simulation-based design closure becomes increasingly important. A serious 
bottleneck of simulation-driven optimization is its high computational cost, which makes straightforward 
approaches such as employing EM solver directly in an optimization loop impractical. Co-simulation [1], 
[2] is only a partial solution because the circuit models with embedded EM components are still directly 
optimized. Efficient simulation-driven design can be realized using surrogate-based optimization (SBO) 
principle [3], where the optimization burden is shifted to a surrogate model, computationally cheap 
representation of the structure being optimized (referred to as the fine model). The successful SBO 
approaches used in microwave area are space mapping (SM) [4-7] and various forms of tuning [8-10] and 
tuning SM [11,12]. Unfortunately, their implementation is not always straightforward: substantial 
modification of the optimized structure may be required (tuning), or additional mapping and more or less 
complicated interaction between auxiliary models is necessary (SM). Also, space mapping performance 
heavily depends on the surrogate model selection. 

Here, a simple yet efficient design optimization methodology to be used for structures simulated 
using Sonnet em [13] is introduced. Our technique is based on iterative optimization of coarse-
discretization models using a simple grid-search algorithm. The optimal design of the current model is 
used as an initial design for the finer-discretization one. The final design can be refined using a second-
order polynomial approximation of the available Sonnet-simulation data. The proposed methodology is 
very simple to implement, unlike space mapping or other surrogate-based approaches does not require a 
circuit-equivalent coarse model nor any modification of the structure being optimized. It is also 
computationally efficient because the optimization burden is shifted to the coarse-discretization models.  
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2.  Multi-Fidelity Multi-Grid Design Optimization Procedure 
 
In this section, we formulate the optimization problem (Section 2.A), describe the building blocks of 

the proposed optimization procedure (Sections 2.B-2.E) and formulate the procedure itself (Section 2.F). 
A. Design Optimization Problem 

The design optimization problem is formulated as follows 
* arg min ( ( ))f fU∈

x
x R x . (1)

where Rf(x) ∈ Rm is a response vector of a structure of interest, e.g., |S21| at m frequencies; x ∈ Rn is a design 
variable vector; U is a scalar merit function, e.g., a minimax function with upper/lower specifications; xf

* is 
the optimal design to be determined. Here, Rf is evaluated using Sonnet em with a gh.f × gv.f grid. 
B. Coarse-Discretization Models 

The optimization technique introduced here exploits a family of coarse-discretization models {Rc.j}, 
j = 1, …, K, all evaluated using Sonnet em. The model Rc.j exploits a grid gh.j × gh.j. It is assumed that 
gh.j > gh.j+1 and gv.j > gv.j+1 for j = 1, …, K – 1, and gh.K > gh.f and gv.K > gv.f. In other words, discretization of 
Rc.j+1 is finer than that of Rc.j. In practice, the number K of coarse-discretization models is two or three. 
C. Grid-Search Algorithm 

To optimize the coarse-discretization model Rc.j we use the following simple grid-search procedure 
(here, x(j–1) = [x1

(j–1) … xn
(j–1)]T is the initial design, i.e., the optimal design of Rc.j–1, s is a function that 

“rounds” x to the nearest grid point s(x)): 
 

x(j) = s(x(j–1));      // Snap x(j) to the nearest grid point 
Umin = U(Rc.j(x(j)));      // Evaluate objective function 
do 
      U0 = Umin;      // Update the reference objective function value 
      for k = 1 to n      // Evaluating objective function at perturbed designs 
            Uk = U(Rc.j([x1

(j) … xk
(j) + dk … xn

(j)]T));   // (here, dk = gh.j or gv.j (depends on orientation of xk
(j))) 

      end 
      h = – [(U1 – U0)/d1 … [(Un – U0)/dn]T;   // Search direction estimation 
      h = h·(||[d1 … dn]T||/||h||);    // Search direction normalization 
      do       // Line search: 
            xtmp = s(x(j) + h);      // Set the trial design and “snap” it to the grid 
            Utmp = U(Rc.j(xtmp));    // Evaluate objective function at the trial design 
            if Utmp < Umin      // If the trial is successful:  
                  x(j) = xtmp;     // 1. Update the design  
                  Umin = Utmp;     // 2. Store the best result 
                  h = 2·h;     // 3. Increase the search step 
            else 
                  break;     // Otherwise, exit the line search algorithm 
            end 
      while 1 
      if Umin ≥ U0      // Line search failed => perform local search 
            for k = 1 to n  
                   U–k = U(Rc.j([x1

(j) … xk
(j) – dk … xn

(j)]T));   // Evaluate the remaining neighbours of x(j) 
            end 
            Utmp = min{U–k, U–k+1, …, Uk–1, Uk};    // Find the best design 
            ktmp = argmin{–n ≤ k ≤ n : Uk};   // Fine the corresponding perturbation index 
            if Umin < U0      // If local search is successful: 
                   x(j) = [x1

(j) … xk
(j) + sign(ktmp)·dk … xn

(j)]T;  // 1. Update the design 
                   Umin = Uktmp;     // 2. Store the best value 
            end 
      end 
while Umin < U0      // Continue if further improvement was possible 
return x(j);      // Otherwise, return x(j) as the optimal design of Rc.j 

 

For simplicity, the unconstrained version of the grid-search algorithm is described above. Generalization 
for constrained optimization is straightforward. Operation of the algorithm is illustrated in Fig. 1. 
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Fig. 1. Illustration of the grid-search algorithm for two design variables (n = 2). The search direction (→) at the 
initial design x(j–1) is obtained using two perturbed designs marked as squares. The trial points for the line search are 
denoted as 1, 1’ and 1’’. The last successful trial design is 1’. At this design, a new search direction is found, and a 
new line search is launched with designs 2, 2’ and 2’’ (the last of which is unsuccessful). The next line search 
starting from 2’ is unsuccessful and the new design 3 is obtained using a local search, similarly as the final design 
x(j) that cannot be further improved even by a local search, which terminates the algorithm. 

 

D. Design Refinement 
Having optimized the finest of the coarse-discretization models, Rc.K, we also have its evaluations at 

x(K) and at all perturbed designs around it xk
(K) = [x1

(K) … xk
(K) + sign(k)·dk … xn

(K)]T, i.e., R(k) = Rc.K(xk
(K)), k = 

–n, –n+1, …, n–1, n. This data can be used to refine the final design without directly optimizing Rf. 
Instead, one can set up an approximation model involving R(k) and optimize it in the neighbourhood of x(K) 
defined as [x(K) – d, x(K) + d], where d = [d1 d2 … dn]T. In this work, we use a reduced quadratic model q(x) 
= [q1 q2 … qm]T, defined as  

2 2
1 .0 .1 1 . . 1 1 .2( ) ([ ... ] ) ... ...T

j j n j j j n n j n j n nq q x x x x x x+= = + + + + + +x λ λ λ λ λ . (2)
Coefficients λj.r, j = 1, …, m, r = 0, 1, …, 2n, can be uniquely obtained by solving the linear regression 
problems qj(xk

(K)) = Rj
(k), k = –n, –n + 1, …, n – 1, n, where Rj

(k) is a jth component of the vector R(k). 
In order to account for possible misalignment between Rc.K and Rf, instead optimizing the quadratic 

model q it is recommended to optimize a corrected model q(x) + [Rf(x(K)) – Rc.K(x(K))] that ensures a zero-
order consistency [14] between Rc.K and Rf. The refined design can be then found as  

( ) ( )

* ( ) ( )
.arg min ( ( ) [ ( ) ( )])

K K

K K
f c KU

− ≤ ≤ +
= + −

x d x x d
x q x R x R x . (3)

If necessary, the step (3) can be performed a few times starting from a refined design, i.e., 
x* = argmin{x(K) – d ≤ x ≤ x(K) + d : U(q(x) + [Rf(x*) – Rc.K(x*)])} (each iteration requires only one 
evaluation of Rf).  
E. Optional Design Specifications Adjustments 

Typically, the major difference between the responses of Rf and coarse-discretization models Rc.j is that 
they are shifted in frequency. This difference can be easily absorbed by frequency-shifting the design 
specifications while optimizing a model Rc.j. More specifically, suppose that the design specifications are 
described as {ωk.L, ωk.H; sk}, k = 1, ..., ns, (e.g., specifications |S21| ≥ –3 dB for 3 GHz ≤ ω ≤ 4 GHz, |S21| ≤ –
20 dB for 1 GHz ≤ ω ≤ 2 GHz and |S21| ≤ –20 dB for 5 GHz ≤ ω ≤ 7 GHz would be described as {3, 4; –3}, 
{1, 2; –20}, and {5, 7; –20}). If the average frequency shift between responses of Rc.j and Rc.j+1 is Δω, this 
difference can be absorbed by modifying the design specifications to {ωk.L – Δω, ωk.H – Δω; sk}, k = 1, ..., ns. 
F. Design Optimization Procedure 

The optimization procedure proposed in this work can be summarized as follows (input arguments are: 
initial design x(0) and the number of coarse-discretization models K): 

1. Set j = 1; 
2. Optimize Rc.j using the algorithm of Section 2.B to obtain a new design x(j); 
3. Set j = j + 1; if j < K go to 2; 
4. Set up a quadratic model q as in (2) and find a refined design x* using (3). 

Note that the the original model Rf is only evaluated at the final stage (step 4) of the optimization process. 
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3. Illustration Examples 

 

A. Compact Stacked Slotted Resonators Microstrip Bandpass Filter [15] 
Consider the stacked slotted resonators bandpass filter [15] shown in Fig. 1. The design parameters are 

x = [L1 L2 W1 S1 S2 d]T mm. The filter is simulated in Sonnet em [13] using a grid of 0.05 mm × 0.05 mm 
(model Rf). The design specifications are |S21| ≥ –3 dB for 2.35 GHz ≤ ω ≤ 2.45 GHz, and |S21| ≤ –20 dB for 

1.9 GHz ≤ ω ≤ 2.3GHz and 2.6 GHz ≤ ω ≤ 2.9 GHz. The initial design is x(0) = [7 10 0.6 1 2 1]T mm. 
We are using two coarse-discretization models: Rc.1 (grid of 0.2 mm × 0.2 mm) and Rc.2 (grid of 0.05 

mm × 0.2 mm). The evaluation times for Rc.1, Rc.2 and Rf are 72 s, 5 min and 16 min, respectively. Figure 
2b shows the responses of Rc.1 at x(0) and at x(1) = [6.4 9.6 0.6 0.6 2 1.8]T mm, its optimal design found 
using a grid search. Figure 3a shows the responses of Rc.2 at x(1) and at its optimized design x(2) = [6.35 9.6 
0.6 0.6 2.2 1.8]T mm. Figure 3b shows the responses of Rf at x(2) (specification error –1.7 dB) and the 
refined design x*  = [6.35 9.6 0.6 0.6 2.25 1.85]T mm (specification error –2.1 dB). The optimization cost 
(Table 1) is quite low and corresponds to only 13 evaluations of the original, fine-discretization model. 
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                                            (a)                                                                                                         (b) 
Fig. 2. Stacked slotted resonators filter: (a) geometry [15]; (b) responses of the coarse-discretization model Rc.1 (0.2 
mm × 0.2 mm grid) at the initial design x(0) (dashed line) and at the optimized design of Rc.1, x(1), (solid line).  
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                                                    (a)                                                                                                  (b) 
Fig. 3. Stacked slotted resonators filter: (a) responses of the coarse-discretization model Rc.2 (0.05 mm × 0.2 mm grid) 
at x(1) (dashed line) and at x(2) (solid line), the optimized design of Rc.2 found using a grid search; (b) responses of the 
original fine-discretization model Rf at x(2) (dashed line) and at the refined final design x* (solid line). 
 

Table 1. Optimization cost of the stacked slotted resonators bandpass filter. 

Algorithm Component Number of Model 
Evaluations 

Evaluation Time 
Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 41 49 3.1 
Optimization of the coarse-discretization model Rc.2 26 130 8.1 

Evaluation of the original (fine-discretization) model Rf 2 32 2.0 
Total optimization time N/A 211 13.2 
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B. High-Temperature Superconducting (HTS) Filter [16] 
Consider the HTS filter shown in Fig. 4a [16]. The design parameters are x = [L1 L2 L3 S1 S2 S3]T. The 

width of all the sections is W = 8 mil. A substrate of lanthanum aluminate is used with εr = 23.425 
H = 20 mil. The filter is simulated in Sonnet em [13] using a grid of 0.5 mil × 0.5 mil (the Rf model). The 
design specifications are |S21| ≤ 0.05 for ω ≤ 3.966 GHz, |S21| ≥ 0.95 for 4.008 GHz ≤ ω ≤ 4.058 GHz, and 
|S21| ≤ 0.05 for ω ≥ 4.100 GHz. The initial design is x(0) = [196 196 190 20 92 100]T mil. 

Again, we are using two coarse-discretization models: Rc.1 (grid of 2 mil × 4 mil) and Rc.2 (grid of 
1 mil × 2 mil). The evaluation times for Rc.1, Rc.2 and Rf are about 2 min, 6 min and 51 min, respectively. 
Figure 4b shows the responses of Rc.1 at x(0) and at x(1) = [188 190 188 20 76 84]T mil, its optimal design 
found using a grid search, as well as the response of Rc.2 at x(0). Because of noticeable frequency shift 
between Rc.1(x(0)) and Rc.2(x(0)) (7 MHz on average) the design specifications were adjusted as described 
in Section 2.E while optimizing Rc.1. Figure 5a shows the responses of Rc.2 at x(1) and at its optimized 
design x(2) = [188 189 188 20 76 86]T mil, as well as the response of Rf at x(2). Here, the average frequency 
shift between Rc.2(x(1)) and Rf(x(1)) is about 5 MHz and the design specifications are modified accordingly. 
Figure 5b shows the responses of Rf at x(2) (specification error –0.01 dB) and the refined design x*  = [188 
189 188 20.5 78 88]T mm (specification error –0.02). Total optimization cost (Table 2) corresponds to 
only 10 evaluations of the fine-discretization model. 
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                                            (a)                                                                                                         (b) 
Fig. 4. HTS filter: (a) geometry [16], (b) responses of the coarse-discretization model Rc.1 at the initial design x(0) (dashed 
line) and at its optimized design x(1) (solid line), as well as the response of Rc.2 at x(0) (dotted line); design specifications are 
shifted by 7 MHz toward higher frequencies to absorb the frequency shift between Rc.1(x(0)) and Rc.2(x(0)).  
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                                                    (a)                                                                                                  (b) 
Fig. 5. HTS filter: (a) responses of the coarse-discretization model Rc.2 at x(1) (dashed line) and at its optimized design 
x(2) (solid line), as well as the response of Rf at x(2) (dotted line); design specifications are shifted by 5 MHz toward higher 
frequencies to absorb the frequency shift between Rc.2(x(1)) and Rf(x(1)); (b) responses of the fine-discretization model Rf 
at x(2) (dashed line) and at the refined final design x* (solid line); here the original design specifications are shown. 
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Table 2. Optimization cost of the HTS filter. 

Algorithm Component Number of Model 
Evaluations 

Evaluation Time 
Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 104 195 3.8 
Optimization of the coarse-discretization model Rc.2 26 152 3.0 

Evaluation of the original (fine-discretization) model Rf 3 153 3.0 
Total optimization time N/A 500 9.8 

 
4. Conclusion 

 
Simple and robust algorithm for microwave design optimization with Sonnet is proposed that exploits 

sequential, multi-grid optimization of coarse-discretization Sonnet models and polynomial-approximation-
based refinement of the final design. The presented method is easy to implement. It does not need an 
auxiliary equivalent-circuit model (which is typically used in space mapping) or any modifications to the 
original structure (such as cutting and inserting the tuning ports necessary by the tuning methodology). It is 
also computationally efficient as most of the operations are performed on the coarse-discretization models. 
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