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Abstract: In this paper, we present a methodology that allows the efficient automatic generation of surrogate
models for arbitrary transmission lines. The technique is based upon a transmission line model that is used to
map the electromagnetic simulation results on to equivalent circuit parameters (ECPs). Sampling techniques are
then employed on the ECPs rather than the S-parameters, contributing to a simplified model structure and reduced
training data samples. The technique is demonstrated through the generation and testing of a transmission line on
a conductive silicon substrate. Only 18 training data points were required to create the model, which is shown to
be accurate over a large range of widths, oxide thickness, and lengths. The model formulation allows extrapolation
and we show that our model is capable of accurately predicting the S-parameters at frequencies over two times
greater than the highest frequency in the training data.
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1. Introduction

In the past decade there has been tremendous research directed towards automatic model generation techniques
as the time taken to generate models still remains a major bottleneck for CAD-based design processes. For a
semiconductor device manufacturer this is especially prominent as many changes to the substrates are made while
optimizing the performance of the transistor and passive matching components. Models are necessary to understand
the effects of the technology optimization on the multi-stage power-amplifier performance, and repeated extraction
is often required for all of the planar components witin the MMIC including: transmission lines, spiral inductors,
capacitors, interconnects, discontinuities, as illustrated in Fig. 1.

There exists a large variety of extraction techniques and compact models that can be used for microwave circuit
design. Many of these models are physics-based analytical expressions and have inherent limiting assumptions
about the device physics. Measurement-based models are also frequently employed but they require significant
characterization time, which also cannot be performed until structures have been built. Thus, an established trend
is to create models based on electromagnetic simulation (EM) results [1]. From the simulation of a parameterized
circuit geometry, the generation of efficient and accurate models suitable for the implementation within standard

Figure 1. A photograph of an RFIC with a zoomed view of the internal transistor and matching circuits.
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circuit-based simulation packages has been demonstrated with several commercially available software packages
[2]-[4]. The goal of an EM-based model is to provide the same level of accuracy as an electromagnetic simulator
but be as computationally efficient as lumped-element models implemented within a circuit-based simulator [1].

While generating models automatically from electromagnetic simulations is very attractive, there are two key
issues that have to be addressed. First, the computational cost associated with repeatedly performing electromag-
netic simulations is high. Second, a function approximation method must be selected that not only accurately
approximates the simulation data but does so in a manner which minimizes the amount of required data. The
function approximation methods can range from data-based look-up tables with interpolation, polynomial curve fits,
complex rational function approximation schemes [5], and artificial neural networks [1].

In this paper we leverage a novel form of space-mapping knowledge-based artificial neural networks (ANNSs), and
a physical-based model to develop a generalized model of a transmission line. We demonstrate a significant reduction
in the number of electromagnetic simulations required over that by conventional approaches. This technique also
permits accurate extrapolation far outside of the training region. In the Sections that follow we shall present
the background formulation of the transmission line model using the space-mapping concept and demonstrate its
applicability, efficiency, and extrapolation capabilities for a transmission line on a semiconductor substrate.

2. Background

Researchers have long used equivalent circuits to transform the terminal-parameters (Z/Y/S-parameters) into
equivalent circuit parameters (ECPs) [6], [7], noting that the ECPs were smoother functions of the input variables
than were the terminal parameters. The transformation from terminal-parameters to ECPs can be viewed as a
mapping from one space to another. By mapping, it is meant that a function is used to modify the domain of one
function to that of another. The purpose of the mapping is to modify the existing domain so that the problem in
the new domain becomes easier to solve. The value of space-mapping is well documented for optimizing complex
electromagnetic structures and modeling microwave circuits and systems [8], [9].

To concisely summarize, the operation of space mapping can be explained by considering two models, a coarse
model and a fine model [8]. As an example, the coarse model could be an equivalent-circuit and the fine model
could be the output of an electromagnetic simulator. Let f(z) represent the fine model response and let R.(z.)
represent the coarse model response. The objective of space-mapping is to find a mapping M from the fine model
input-space z to the coarse model space z.

z. = M(zx) (1

such that,
R.(M(z)) ~ f(z) 2)

The mapping of the fine to coarse input space can be accomplished through standard function approximation. Once
the mapping has been found, the coarse model can be used in combination with the mapping to provide results with
comparable accuracy to that of the electromagnetic simulator used to generate the fine model space. While using the
space-mapped model during an optimization process the algorithm controlling the EM simulator operates through
the established mapping. A dramatic reduction in the number of iterations occurs as compared to a gradient-based
optimization performed directly on the fine-model response [8].

Building on the concept and nomenclature of space-mapping, we propose the following method using inverse
coarse models as outlined in Fig. 2. The fine model response Ry (zy) is operated on by the inverse coarse model
R L It is desired to find a mapping such that,

M(zg) ~ R (Ry(z5)) 3
then the response of the fine model can be expressed as,
Ry(zs) ~ Re(M(zy)) @

— Fine Model Coarse Model™" frmmp
X Rilx) R (Rex1)

Figure 2. A flow-chart illustrating how the results of the EM simulation are mapped through the inverse coarse model to equivalent circuit
parameters.
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Figure 3. Simulated magnitude of S1; and the real part of Zo vs. frequency and line width

Mathematically, we are using the physics contained within the mapping, or knowledge, to transform the circuit
response.

Ideally, the mapping R ! should be a one-to-one mapping, perform a transformation into a space with reduced
complexity, and have favorable error performance. That is, when small errors in the function approximation occur,
the map should be selected such that these errors are minimized during the inverse mapping. The ideal map is one
that provides all of these benefits and is the simplest to implement. Once the transformation from terminal-parameters
to equivalent-circuit parameters is viewed as a mapping, it becomes possible to compare different circuits, or maps,
and determine which one is the best suited to approximate a function. The implicit assumption is that the smoother
a function becomes the less samples are required to approximate it [10].

Minimizing the number of samples is essential since the sample points are generated through the use of a
time-consuming electromagnetic simulator. The transformation of the output space through a set of equations, or
mappings, can be very advantageous if the resulting functional-behavior is more linear in the transformed space.
In the general case, determining a set of equations to perform this transformation can be very difficult, unless
some prior knowledge about the system is assumed. In the case of planar microwave circuit elements, the prior
knowledge takes the form of existing equivalent circuits. So it is possible to transform the S-parameters which are a
function of the geometry and frequency to equivalent-circuit parameters. If the correct equivalent circuit is selected,
the resulting function in ECP-space will be much more linear than the original function. Function approximation
is then performed in ECP-space and the S-parameters can be regenerated.

To demonstrate this we consider the behaviour of a transmission line over frequency for a range of line widths.
In Fig. 3(a) we have simulated a 1 inch long transmission line, on a 20 mil thick R04350 substrate for widths
varying from 5 to 100 mil. Although not evident in the surface plots the frequency of the nulls and the peaks vary
with changing widths. Using the inverse coarse model, we transform the S-parameters via the ABCD model of a
transmission line into the characteristic impedance, Z, and the propagation constant +. In Fig. 3(b) the real part
of the characteristic impedance is plotted and it is significantly smoother than the S-parameters. In addition the
ABCD-representation of the transmission line removes length as an explicit input to the model thus collapsing the
number of dimensions that need to be sampled in the model generation process.

3. General Transmission Line Model Development

Within this subsection, the generalized framework for a transmission line model is presented and it is applied to a
transmission line constructed on top of an oxide of varying thickness, grown on 75um conductive silicon substrate.
We continue with the development of the transmission line model based on the ABC D-parameters, where the
characteristic impedance, Z,, and propagation constant, -y, specify its performance. The equivalent circuit parameters
can be directly extracted, i.e. no optimization, from the simulated S-parameters using the ABCD parameters of a
transmission line. The characteristic impedance is directly extracted using,

B
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Figure 4. A diagram of the transmission line model (a) and the model development flow-chart in (b)

and the complex propagation constant is extracted using,

-1
7= W o ©)
where A, B and C are from the ABC D-matrix and [ is the length of the transmission line.

A diagram representing the transmission line model is shown in Fig. 4(a) [11]. Artificial neural networks are
used to approximate the characteristic impedance and the propagation constant as a function of the frequency, width
of the line and oxide thickness. The outputs of the neural network and the line length are then assembled into the
ABCD matrix and converted to S-parameters.

To minimize interactive trial-and-error efforts in model development, we adapted an automatic model generation
flow [12]. A university developed neural network based modeling tool, NeuroAMG [2], is used to interface with
SonnetLab for automatic modeling. SonnetLab is a MATLAB toolbox that enables scripting the layout drawing
and control of Sonnet’s 3D planar electromagnetic simulator. We developed the drawing script for a transmission
line over a specified substrate in SonnetLab, with the length and width of the line and the oxide thickness as input
parameters. This script is then fed into NeuroAMG, where the inputs are adaptively sampled within a given input
range. NeuroAMG then drives the Sonnet EM simulator to generate EM data at the sampled geometries, and start
training neural network to capture the data behavior. Such modeling process from data sampling, layout drawing,
EM simulation, and model training are fully automated, and only the initial setup of input range, desired model
accuracy, and sampling algorithm is needed at the beginning of the model development. Adaptive sampling also
allows accurate model development with the minimum number of training samples and simplest neural network
structure possible. The automatic model generation flow is illustrated in Fig. 4(b).

The neural network is built upon the physics-based structure as shown in Fig. 4(a), where the line width, oxide
thickness, and frequency are considered inputs to the neural network. The range of the line width is 5-80um, the
oxide thickness is 0.25-2pm, and the frequency range is from 50 MHz to 12 GHz. The outputs of the neural network
are the real and imaginary parts of the characteristic impedance Z,, and the complex propagation constant y. We
request the automatic model generation to reach the raining error of 1%. The adaptive sampling used 18 training
samples, i.e., 18 EM simulations of different transmission lines in Sonnet, and the resulting neural network is a
simple 3-layer MLP with 8 hidden neurons. The overall model development time, including EM data generation and
adaptive model training is 45 minutes. To verify our model accuracy, we picked a different geometry not included
in our training and generated S-parameter data from EM simulation. This set of test data are then compared with
the S-parameters predicted by the neural model. The comparison result for a line with length of 500um, oxide
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Figure 5. A comparison of the magnitude the reflection coefficient for varying line widths (a) and for varying oxide thickness (b).

Table 1
COMPARISON BETWEEN CONVENTIONAL AND PHYSICS-BASED MODELING TECHNIQUES FOR TRANSMISSION LINE MODELING

Automatic Model Generation Final Valid Physical Range of Model Usage
Tbr‘;ﬁi(:lfg Va'TiZé?on Modgl‘i,:;a #ime J;::ir:bn(g:ln N%‘;f,'cm‘:ge' Length Width | Oxide thickness
Samples | Samples (hours) Error (%) (um) (um) (um)
Mfd“dyfﬁigﬁch 18 14 0.75 0.84/0.92 384 Any physical length | 5~80 025-2
Mod"g;‘::‘::)‘;“;'a " 52 106 8.388 0.96/0.99 4164 100~1500 5~80 025-2

thickness of 1.86pm, and different width from 10-90um is shown in Fig. 5, and very good agreement between
the Sonnet data and model solution is observed. Note that in Fig. 5, we used a width of 90 pum, which is outside
of the training range. Also shown is the comparison of results in Fig. 5(b) where the oxide thickness was varied
between 0.3pm and 2um. Again the model matches with EM data very well.

4. Analysis of results

To further demonstrate the efficiency of the physics-based inverse mapping approach, another model is developed
through conventional modeling approach where the line length, line width, oxide thickness, and frequency are model
inputs, and S-parameters are model outputs. Compared to the physics-based model, the conventional model has one
extra input which is the line length. The number of the outputs of the conventional model remains the same as that
of the physics-based model. But instead of being real and imaginary parts of Z, and =, the outputs are defined as
real and imaginary parts of Si; and Si2 which are more complicated in as compared to with the smooth Z, and
~ as shown in Fig. 3(b).

Table I shows efficiency comparison between the conventional and the physics-based modeling approaches. Both
conventionally developed model and the physics-based model are developed through automatic model generation
by NeuroAMG. It is demonstrated that the physics-based modeling approach is more accurate, requires much less
data samples, and uses much shorter modeling time. The final neural model structure of the physics-based model is
more compact than the neural model obtained from conventional method. The physics-based model is more general
than the conventional model and is valid for any given line length due to its embedded physics formulation. Due
the knowledge embedded within the model, it has the ability to extrapolate well outside of its training region. We
demonstrate this by using the model to predict S-parameters up to 40 GHz, although only trained up to 12 GHz.
All of the S-parameters agree well past 25 GHz, over twice the highest frequency used in the training data, as
shown in Figs. 6(a) and 6(b).

5. Conclusions

We have demonstrated a general modeling methodology applicable to transmission lines that enables very efficient
generation of compact neural network models. The transmission line model we developed only contained 8 hidden
neurons and was completed in less than 45 minutes of simulation. The model was shown to extrapolate well over
two times the frequency range of data upon which it was trained.
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Figure 6. Plots of the characteristic impedance (a) and the magnitude of the reflection coefficient (b) showing the good agreement between
the neural network model and EM simulations. The extrapolation capabilities of the model are demonstrated as it was based on simulation data
up to 12 GHz
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