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Abstract: A two-level derivative-free algorithm for design optimization of structures simulated using 

Sonnet em is introduced. The presented technique exploits a coarse-discretization model of the structure of 

interest that is optimized on a coarse grid using pattern search. Space mapping optimization is subsequently 

performed with the underlying surrogate model created using limited amount of coarse-discretization Sonnet 

model data and a recently introduced shape-preserving response prediction methodology. Our technique is 

demonstrated through the design of two microstrip filters.  
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1. Introduction 
 

EM-simulation-based design closure becomes increasingly important in contemporary microwave 
engineering. This is partially due to a growing demand for accuracy but also because design-ready 

theoretical models are not easily available for many structures such as UWB antennas or substrate-

integrated circuits. On the other hand, simulation-driven optimization may be impractical because of its high 

computational cost, particularly in the case of traditional (e.g., gradient-based) algorithms that require large 
number of EM simulations.  

Low-cost simulation-driven design can be performed using surrogate model: a computationally cheap 

representation of the structure under consideration. The surrogate model is iteratively updated and re-
optimized in order to yield a satisfactory design of the original structure [1]. It is of primary importance for 

the computational efficiency of this process that the surrogate is physically based [2] so that it can give a 

reliable prediction of the original structure’s behavior under the modification of its designable parameters. 
The most successful techniques in microwave engineering exploiting physically-based surrogates are 

(SM) [2]-[5] and various forms of tuning [6]-[8] and tuning SM [9,10]. The tuning approaches are 

particularly suited to be used with Sonnet em [11] because of its co-calibrated ports technology [8]. It should 

be noted though that implementation of both SM and tuning is not always straightforward: substantial 
modification of the optimized structure may be required (tuning), or additional mapping and more or less 

complicated interaction between auxiliary models is necessary (SM). Also, space mapping performance 

heavily depends on the surrogate model selection [12]. A simple yet efficient design optimization 
methodology to be used with Sonnet em was introduced in [13], which was based on sequential 

optimization of coarsely-discretized Sonnet models of increasing mesh density and the design refinement 

using an auxiliary second-order polynomial model.  
In this paper, an alternative technique is proposed that exploits space mapping working with a 

surrogate model constructed using the coarse-discretization Sonnet-simulation data and a modified 
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version of the shape-preserving response prediction (SPRP) [14] technique. Our method does not require 

any circuit-equivalent coarse model or any modification of the structure being optimized. The surrogate 
model created using SPRP is more accurate than the polynomial approximation used in [13], which 

allows us to conduct the design process using a limited number of evaluations of a single coarse-

discretization Sonnet model. Our technique is demonstrated through the design of two microstrip filters. 

 

2. Design Optimization Using Shape-Preserving Response Prediction and Space Mapping 
 

A. Design Optimization Problem 

The design optimization problem is formulated as follows: 
* arg min ( ( ))f fU

x
x R x , (1) 

where Rf(x)  R
m
 is a response vector of a structure of interest, e.g., |S21| at m frequencies; x  R

n
 is a design 

variable vector; U is a scalar merit function, e.g., a minimax function with upper/lower specifications; xf
*
 is 

the optimal design to be determined. Here, Rf is evaluated using Sonnet em with a gh.f  gv.f grid. 

B. Coarse-Discretization Model and Initial Optimization Stage 

The optimization technique introduced here exploits a coarse-discretization model Rcd, also evaluated 

using Sonnet em. The model Rcd exploits a grid gh.c  gv.c so that gh.c > gh.f and gv.c > gv.f.  

The model Rcd is optimized on the grid gh.c  gv.c using a pattern search algorithm [13] in order to find a 
design x

(0)
 that will be used as a starting point for the next optimization stage. Obviously, the resolution of 

this initial optimization stage is limited by the coarseness of the grid gh.c  gv.c, however, for the same reason, 
the computational cost of finding x

(0)
 is low and typically corresponds to a few evaluations of the fine 

model Rf. 

C. Surrogate Model Construction Using Shape-Preserving Response Prediction 

Having optimized the coarse-discretization model Rcd we also have its evaluations at x
(0)

 and at all 

perturbed designs around it, xk
(0)

 = [x1
(0)

 … xk
(0) 

+ sign(k)·dk … xn
(0)

]
T
, i.e., R

(k)
 = Rcd(xk

(0)
), k = –n, –n+1, …, 

–1, 1, ..., n–1, n. Here, dk = gh.c or gv.c (depending on the orientation of xk
(0) 

with respect to x
(0)

). This data is 
used to build the surrogate model for the subsequent space mapping optimization process. The surrogate 

is constructed following the shape-preserving response prediction (SPRP) technique [14] which is 

modified here because no underlying coarse model is available in our case. We shall use the notation 

Rcd(x) = [Rcd(x,1) … Rcd(x,m)]
T
, where j, j = 1, …, m, is the frequency sweep. 

Figure 1 shows the response of the coarse-discretization model at x
(0)

, Rcd(x
(0)

), as well as the 
response of Rcd at xk

(0)
 for a certain value of k. The plots are |S21| responses of the microstrip bandpass filter 

considered in Section 3.A. A set of characteristic points is distinguished on each of the plots, here, 

corresponding to |S21| = –5 dB, –20 dB, as well as local |S21| maxima and minimum within the pass band. A 
discussion on how to select characteristic points for a specific design case can be found in [14]. We use the 

notation p0
j
 = [0

j
 r0

j
]

T
 and pk

j
 = [k

j
 rk

j
]

T
, j = 1, …, K, to denote characteristic points of Rcd(x

(0)
) and 

Rcd(xk
(0)

), respectively. Here,  and r denote the frequency and magnitude components of the respective 

point. The short line segments shown in Fig. 1 are so-called translation vectors defined as tk
j
 = [t.k

j
 rt.k

j
]

T
,  

j = 1, …, K, where t.k
j
 = k

j
 – 0

j
 and rt.k

j
 = rk

j
 – r0

j
. The translation vectors indicate the change of the 

characteristic points of the Rcd response while moving from x
(0)

 to xk
(0)

. 
In order to employ SPRP to predict the response of Rcd at any x we have to find the translation vectors 

t 
j
 =  [t

j
 rt

j
]

T
,  j = 1, …, K, corresponding to the change of design from x

(0)
 to x. For any given design x, we 

find a subset XS of the base set {xk
(0)

} that defines a rectangular area (hypercube) containing x. The surrogate 

model is set up using all points from XS. Figure 2 illustrates this for n = 2. Without loss of generality, we can 

assume that XS = {x
(0)

, x1
(0)

, …, xn
(0)

}. We define: 

1 1 2 2 ...j j j j

n n     t t t t , (2) 

where 1, 2, …, n, determines a unique representation of x – x
(0)

 using vectors vi = xk
(0)

 – x
(0)

, i = 1, …, n. 

Coefficients i can be explicitly found as 
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 

1

12 (0)

1 2 ... ( )n

n









 
 
    
 
 
  

v v v x x . (3) 

Having the translation vectors t 
j
 we can define the SPRP surrogate model 

sR  of Rcd : 

1( ) [ ( , ) ... ( , )]T

s s s mR R R x x x , (4) 

where the model 
sR  is defined at frequencies 0

j 
+ t

j
, j = 0, 1, ..., K, K + 1, as follows (here, 0

0 
= 1, 

0
K+1 

= m, and t
0 
= t

K+1 
= 0): 

(0)

0 0( , ) ( , )j j j j

s t cd tR R r    x x , (5) 

for j = 1, …, m. For other frequencies, the model 
sR  is obtained through linear interpolation: 

(0) 1 1

0 0( , ) ( , (1 ) ) [(1 ) ]j j j j

s cd t tR R r r           x x , (6) 

where 0
j 
+ t

j
 ≤   ≤ 0

j+1 
+ t

j+1
  and  = [ – (0

j 
+ t

j
)]/[(0

j+1 
+ t

j+1
) – (0

j 
+ t

j
)]. (0)( , )cdR x  is an 

interpolation of {Rcd(x
(0)

,1), …, Rcd(x
(0)

,m)} onto the frequency interval [1,m]. This interpolation is 
necessary because the original frequency sweep is a discrete set. 

Note that the SPRP model (2)-(6) is well defined only if there is one-to-one correspondence between 

the characteristic points for all responses Rcd(x
(0)

) and Rcd(xk
(0)

). Such a correspondence can be enforced 
even if the number of distinctive features (e.g., local maxima and minima) is different for the responses. One 

solution is to introduce additional points that are equally spaced in frequency and located in between of 

other, well defined points [15]. 
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Fig. 1. Example response of the coarse-discretization model Rcd at x(0), Rcd(x

(0)), (solid line) and at xk
(0), Rcd(xk

(0)), 

(dashed line). Circles and squares indicate the characteristic points of Rcd(x
(0)) and Rcd(xk

(0)), respectively. Short line 
segments denote the translation vectors that show the change of the characteristic points of the Rcd response while 

moving from x(0) to xk
(0). 

x
(0) x1

(0)

x - x
(0)

 = 1(x1
(0)- x

(0)) 

           + 2(x2
(0)- x

(0))
x-1

(0)

x-2
(0)

x2
(0)

XS

 
 

Fig. 2. Utilization of Rcd(x
(0)) and Rcd(xk

(0)) to create the SPRP surrogate model (n = 2). Designs x(0) and xk
(0), k = –2,    

–1, 1, 2, are denoted using black circles. A shaded area denotes a hypercube defined by a subset XS of points being the 

closest to an example evaluation design x, which is represented as linear combination of vectors xk
(0) – x

(0). The 

translation vectors t
 j used to define the surrogate model (2)-(6) at x are calculated using coefficients of this linear 

combination and the translation vectors of Rcd(xk
(0)) – Rcd(x

(0)). Here, we have t j = 1t1
j + 2t2

j. 
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D. Space Mapping Optimization Algorithm 

The SPRP surrogate model is used to optimize the fine model using the standard space mapping 

algorithm of the form [2]:  

 ( 1) ( )arg min ( )i i

sU 
x

x R x , (7) 

where x
(i)

, i = 0, 1, … is a series of approximate solutions to (1) with x
(0)

 being the approximate optimum of 

the coarse-discretization model Rcd (cf. Section 3.C).  

In this work, the SPRP model 
sR  is corrected using input and frequency SM [3] so that the SM 

surrogate model Rs
(i)

 is defined as: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 1 2( ) ( ,[ , , ]) [ ( , ) ... ( , )]i i i i i i i i i i T

s s s s mf f R f f R f f      R x R x c x c x c , (8) 

where 

1 2

( ) ( ) ( ) ( ) ( )

1 2 1 20[ , , ]
[ , , ] arg min || ( ) ( ,[ , , ]) ||

ii i i k k

f skf f
f f f f


 

c
c R x R x c . (9) 

Using these simple SM transformations is normally sufficient: the SPRP model is relatively accurate by 
itself as it is built from the coarsely-discretized Sonnet model Rcd. 

 

3. Illustration Examples 
 

A. Compact Stacked Slotted Resonators Microstrip Bandpass Filter [16] 

Consider the stacked slotted resonators bandpass filter [16] shown in Fig. 3. The design parameters are 

x = [L1 L2 W1 S1 S2 d]
T
 mm. The filter is simulated in Sonnet em [11] using a grid of 0.05 mm  0.05 mm 

(model Rf). The design specifications are |S21|  –3 dB for 2.35 GHz    2.45 GHz, and |S21|  –20 dB for 

1.9 GHz    2.3GHz and 2.6 GHz    2.9 GHz. The initial design is x
init

 = [7.2 10.4 0.5 1 2 1.2]
T
 mm. 

The coarse-discretization model Rcd uses a grid of 0.4 mm  0.5 mm. The evaluation times for Rcd 
and Rf are 25 s and 16 min, respectively. Figure 4(a) shows the responses of Rcd at x

init
 and at x

(0)
 = [6 9.6 

1 1 2 2]
T
 mm, its optimal design found using a pattern search. Figure 4(b) shows the responses of the fine 

model at x
(0)

 and at x
(2)

 = [6.15 9.2 1.05 0.9 2.15 2.25]
T
 mm (minimax specification error –2 dB), the 

optimal design obtained in two iterations of the SM algorithm using the SPRP surrogate model. The total 

optimization cost (Table 1) corresponds to only 4 evaluations of the fine model. 

 
Input

Output

L1

W1

W1

L1

S2

S1

S1

d

d

L2

     
Fig. 3. Stacked slotted resonators filter: geometry [16].  

 

Table 1. Optimization cost of the stacked slotted resonators bandpass filter. 

Algorithm Component 
Number of Model 

Evaluations 

Computational Cost 

Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 27 11 0.7 

Evaluation of the original (fine-discretization) model Rf 3 48 3.0 

Total optimization time N/A 59 3.7 
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                                                    (a)                                                                                                  (b) 

Fig. 4. Stacked slotted resonators filter: (a) responses of the coarse-discretization model Rcd at the initial design xinit 

(dashed line) and at its optimized design, x(0), (solid line); (b) responses of the fine model Rf at x(0) (dashed line) and at 

the final design x
(2) (solid line). 

 

B. Third-Order Chebyshev Bandpass Filter [17] 

Consider the third-order Chebyshev bandpass filter [17] shown in Fig. 5. The design variables are 

x = [L1 L2 S1 S2 W1 W2]
T
 mm. The fine model Rf is simulated in Sonnet em [11] using a grid of 0.1 mm  

0.02 mm (evaluation time 15 min). The design specifications are |S21|  –1 dB for 1.8 GHz    

2.2 GHz, and |S21|  –20 dB for 1.0 GHz    1.55GHz and 2.45 GHz    3.0 GHz. The initial design is 
x

init
 = [15 15 0.4 0.4 0.4 0.4]

T
 mm. 

The coarse-discretization model Rcd uses a grid of 1.0 mm  0.1 mm (evaluation time 55 s). 
Figure 6(a) shows the responses of Rcd at x

init
 and at x

(0)
 = [15 15 0.4 0.7 0.2 0.4]

T
 mm, its optimal design 

found using a pattern search. Figure 6(b) shows the responses of the fine model at x
(0)

 and at x
(2)

 = [15.3 

14.7 0.42 0.72 0.16 0.42]
T
 mm (minimax specification error –0.32 dB), the optimal design obtained in two 

iterations of the SM algorithm using the SPRP surrogate model. The optimization cost (Table 2) 

corresponds to 6 evaluations of the fine model. 
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Fig. 5. Third-order Chebyshev bandpass filter: geometry [17]. 
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Fig. 6. Third-order Chebyshev bandpass filter: (a) resp  onses of the coarse-discretization model Rcd at the initial 

design xinit (dashed line) and at its optimized design, x(0), (solid line); (b) responses of the fine model Rf at x(0) (dashed 

line) and at the final design x
(2)

 (solid line). 
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Table 2. Optimization cost of the third-order Chebyshev bandpass filter. 

Algorithm Component 
Number of Model 

Evaluations 

Computational Cost 

Absolute [min] Relative to Rf 

Optimization of the coarse-discretization model Rc.1 48 44 2.9 

Evaluation of the original (fine-discretization) model Rf 3 45 3.0 

Total optimization time N/A 89 5.9 

 
4. Conclusion 

 

Simple and reliable derivative-free algorithm for microwave design optimization with Sonnet is 

proposed that utilizes a coarse-discretization Sonnet model of the structure under consideration. This coarse-

discretization model is used to obtain the initial approximation of the design as well as to create a fast and 

accurate surrogate model for subsequent space mapping optimization of the original structure. Our 
technique is demonstrated through the design of two microstrip filters. 
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