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Abstract: Tuning space mapping (TSM) is one of the latest developments in simulation-driven 

microwave design optimization that combines space mapping with the concept of tuning, and exploits the 

co-calibrated port technology offered by Sonnet em. TSM algorithms allow remarkably fast 

electromagnetics-based design optimization of microwave structures. In this paper, we review this 

technology and describe selected variants of TSM algorithms. Application examples are presented. 
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1. Introduction 
 

Space mapping (SM) is one of the most popular surrogate-based design optimization techniques in 
microwave engineering. It optimizes a CPU-intensive EM-simulated ―fine‖ model through iterative 
optimization and updating of a suitable surrogate constructed from a so-called “coarse” model, a less 
accurate but cheaper to evaluate representation of the fine model (e.g., equivalent circuit) [1-3].  

Tuning space mapping (TSM) [4], combines SM with the concept of tuning—widely used and 
understood in microwave engineering [5-6]. The surrogate model’s role is taken by a tuning model, 
constructed by embedding circuit-theory based components into the fine model structure, and parameters of 
these circuit components are chosen to be tunable. The tuning model is updated and optimized with respect to 
appropriate tuning parameters. The optimal tuning values are translated into a modification of the fine model. 

Several versions of the TSM algorithm have been proposed. In [7], an early version of TSM has been 
introduced (also referred to as the ―Type 0‖ embedding [8]), in which the calibration generally involves 
an auxiliary model, typically a fast SM surrogate [7]. This version of embedding introduces minimal 
disturbance to the EM model so that the tuning model becomes a very accurate representation of the fine 
model. However, it has limited tuning capacity and suffers from difficulties in handling certain cross-
sectional parameters [8]. Also, the calibration process is rather complicated.  

TSM with embedded tuning components (ETSM) (so-called ―Type 1‖ embedding) [8] addresses the 
drawbacks of the Type 0 embedding by replacing entire sections of the structure of interest by tuning 
elements. This allows easy tuning of cross-sectional parameters and simplifies the calibration process. 
However, ETSM requires more co-calibrated ports than TSM, which increases the EM simulation cost. 
And, typically, the ETSM requires more iterations to find a satisfactory design. 

In [9], the fast version of ETSM (FETSM) is introduced, maintaining all the merits of ETSM while 
being substantially faster. In FETSM, the simulation of the structure with all co-calibrated ports is 
replaced by a simulation of the reduced structure where all designable sections are removed [9]. 

In this paper, we briefly review the art of tuning space mapping, describe the details of TSM, ETSM 
and FETSM, and present some illustration examples. 
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2. Tuning Space Mapping. TSM with Type-0 Embedding 
 

A. Tuning Space Mapping Concept 

We are concerned with the optimization problem 

 * arg min ( )f fU
x

x R x , (1) 

where Rf  R
m
 is the response vector of a fine model of a device of interest, U is a merit function (e.g., a 

minimax function), x is a vector of design parameters, and xf
*
 is the optimal solution to be determined.  

Type-0 TSM exploits a tuning model Rt that contains relevant fine model data (e.g., S-parameters) at the 
current design, and tuning parameters (of the circuit elements inserted into the tuning ports). The tunable 

parameters are adjusted so that Rt satisfies the design specifications. The second model, Rc, is used for 

calibration: it allows us to translate changes in the tuning parameters into relevant changes of the actual design 

variables; Rc depends on design parameters, tuning parameters (the same tuning elements are embedded in Rc 
as used in Rt), and SM parameters, adjusted using a parameter extraction process [1] in order to have the model 

Rc meet certain matching conditions [4]. The conceptual illustrations of Rf, Rt and Rc are shown in Fig. 1. 
 

B. TSM Algorithm [7] 

The TSM algorithm produces a sequence of designs x
(i)

, i = 0, 1, … . The iteration of the algorithm 
consists of two steps: optimization of Rt and a calibration procedure. First, the current tuning model Rt

(i)
 is 

built using fine model data at point x
(i)

. In general, because the fine model has undergone a disturbance, the 

tuning model response may not agree with the response of the fine model at x
(i)

 even when the values of the 
tuning parameters xt are set to zero, so these values must be adjusted to, say, xt.0

(i)
 to obtain alignment:  

( ) ( ) ( )

.0 arg min ( ) ( )
t

i i i

t f t t 
x

x R x R x . (2) 

In the next step, we optimize Rt
(i)

. The optimal values of the tuning parameters xt.1
(i)

 as follows:  

 ( ) ( )

.1 arg min ( )
t

i i

t t tU
x

x R x . (3) 

Having xt.1
(i)

 we perform the calibration procedure to determine changes in the design variables that 

yield the same change in the calibration model response as caused by xt.1
(i)

 – xt.0
(i)

. We first adjust the SM 
parameters p

(i) 
of the calibration model to obtain a match with the fine model response at x

(i)
: 

( ) ( ) ( ) ( )

.0arg min ( ) ( , , )i i i i

f c t 
p

p R x R x p x . (4) 

Rc is then optimized with respect to the design variables in order to obtain the next iteration point x
(i+1)

 
 

( 1) ( ) ( ) ( ) ( )

.1 .0arg min ( ) ( , , )i i i i i

t t c t

  
x

x R x R x p x . (5) 

Note that we use xt.0
(i)

 in (4), which corresponds to the state of the tuning model after performing the 

alignment procedure (2), and xt.1
(i)

 in (5), which corresponds to the optimized tuning model (cf. (3)). Thus, 

(4) and (5) allow us to find changes in the design variable values x
(i+1)

 – x
(i)

 necessary to compensate the 
effect of changing the tuning parameters from xt.0

(i)
 to xt.1

(i)
.  
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Fig. 1. Conceptual illustrations of the fine model, the tuning model and the calibration model [7]: (a) the fine model is 

typically based on a full-wave EM simulation, (b) the tuning model exploits the fine model ―image‖ (e.g., in the form 

of S-parameters corresponding to the current design imported to the tuning model using suitable multiport data 

components) and a number of circuit-theory-based tuning elements, (c) the calibration model is usually an equivalent 

circuit dependent on the same design variables as Rf, the same tuning parameters as Rt and a set of SM parameters used 

to align the calibration model with both Rf and Rt during the calibration process. 
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C. Design Example 

Consider the box-section Chebyshev microstrip bandpass filter  [10] (Fig. 2(a)). The design 
parameters are x = [L1  L2  L3  L4  L5  S1  S2]

T
. The fine model is simulated in Sonnet em [11] with a grid of 

1 mil  2 mil. The design specifications are |S21|  –20 dB for 1.8 GHz    2.15 GHz and 

2.65 GHz    3.0 GHz, and |S21|  –3 dB for 2.4 GHz    2.5 GHz.  
The tuning model is constructed by dividing the polygons corresponding to parameters L1 to L5 in the 

middle and inserting the tuning ports at the new cut edges. Its S28P data file is then loaded into the S-

parameter component in Agilent ADS [12]. The circuit-theory coupled-line components and capacitor 

components are chosen to be the tuning elements and are inserted into each pair of tuning ports 
(Fig. 2(b)). The lengths of the imposed coupled-lines and the capacitances of the capacitors are assigned 

as the tuning parameters. The calibration model is an equivalent circuit that contains the same tuning 

elements as the tuning model [10] (Fig. 3). The initial design, x
(0)

 = [928 508 50 50 201 5 19]
T
 mil, is the 

optimal solution of the coarse model, i.e., the calibration model with zero values of the tuning parameters. 

Figure 4 shows the fine model response at the initial design, as well as the response after just one TSM 

iteration with x
(1)

 = [1022 398 46 56 235 4 10]
T
 mil (specification error –1.8 dB). 
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Fig. 2. Box-section Chebyshev bandpass filter: (a) geometry and places for inserting the tuning ports [10], (b) tuning 

model (Agilent ADS). 
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Fig. 3. Box-section Chebyshev bandpass filter: calibration model (Agilent ADS) [10]. 
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Fig. 4. Box-section Chebyshev bandpass filter: the fine model response at the initial design (dashed line) and at the 

design found after one iteration of the TSM algorithm (solid line). 
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3. TSM with Type-1 Embedding (ETSM) 
 

A. ETSM Concept and Algorithm 

TSM with embedded tuning elements (ETSM) involves the tuning model where certain designable sub-

sections of the structure of interest are replaced with suitable tuning elements [8]. Preferably they are 

distributed circuit elements with physical dimensions corresponding to those of the fine model. After a simple 
alignment procedure, we match the tuning model with the fine model. Some of the fine-model couplings are 

preserved (or represented through S-parameters) in the tuning model. Next, the tuning model is optimized by 

changing the values of the design parameters of the embedded tuning elements to satisfy given design 
specifications. The obtained design parameters become our next fine model iterate. An example of inserting 

co-calibrated ports and replacing the coupled line segment by its circuit-theory model is illustrated in Fig. 5. 

The iteration of ETSM consists of two steps: alignment of the tuning model with the fine model and 
the optimization of Rt. First, based on fine model (with co-calibrated ports) data at the current design x

(i)
, 

the current tuning model Rt
(i)

 is built with appropriate tuning elements replacing certain Rf sections. The 

tuning model response may not agree with the response of the original fine model at x
(i)

. We align these 

models by: 
( ) ( ) ( ) ( )arg min ( ) ( , )i i i i

f t 
p

p R x R x p , (6) 

where p represents parameters of the tuning model used in the alignment process. These might be any 

parameters traditionally used by input, implicit or frequency SM [1]. In the next step, we optimize Rt
(i)

 to 

have it meet the design specifications. We obtain the next prediction of the design parameters x
(i+1)

 as: 

 ( 1) ( ) ( )arg min ( , )i i i

tU 
x

x R x p . (7) 

B. Fast ETSM (FETSM) [9] 
Although the ETSM algorithm requires very few (typically 2 to 4) iterations to yield a satisfactory 

design, the simulation time of the structure containing co-calibrated ports is substantially longer than that of 

the original structure (without co-calibrated ports). For medium-scale problems (several design variables), 
the number of ports is 30, 50 or more, which increases the simulation time by at least one order of 

magnitude. As a result, the optimization cost expressed in the number of evaluations of the original structure 

is quite significant. Moreover, the EM simulation of the structure with co-calibrated ports is normally 
performed in each iteration of the ETSM algorithm. 

In [9], a fast version of the ETSM algorithm (FETSM) is proposed. Instead of simulating the entire 

structure (with co-calibrated ports), we simulate the reduced structure with all the designable sub-sections 

removed beforehand. An example of such a procedure, corresponding to what is shown in Fig. 5, is 
explained in Fig. 6.  
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Fig. 5. Illustration of TSM with embedded tuning elements: (a) a coupled microstrip line of length L, (b) coupled 

line with co-calibrated ports inserted, (c) tuning model of the coupled line: middle section is replaced by the 

microstrip model (tuning element). 
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Fig. 6. Fast TSM with embedded tuning element: (a) a coupled microstrip line, (b) coupled line with co-calibrated ports 

and middle section removed, (c) tuning element inserted in between co-calibrated ports. The initial parameter values of 
the tuning element are chosen to coincide with those of the removed section. The number of co-calibrated ports is 

halved with respect to ETSM and the structure to be EM-simulated is simpler (no middle section). 
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From the tuning model point of view, the structure in Fig. 6(b) simulates the same fine-model couplings 

as the one in Fig. 5(b) because the middle section is being removed from the latter anyway. Thus, the accuracy 
of the tuning models based on both structures is expected to be similar. As the reduced structure is much 

simpler and the number of co-calibrated ports is half that of the entire structure, its simulation time is expected 

to be substantially smaller—comparable to the simulation time of the fine model (i.e., the original structure 

without ports). Moreover, because the reduced structure does not depend on the length parameters it is usually 
sufficient to perform its simulation once, at the first iteration of the FETSM algorithm. 

C. Design Example 

Consider the third-order Chebyshev bandpass filter [9] (Fig. 7(a)). The design parameters are 
x = [L1 L2 S1 S2]

T
 mm. Other parameters are: W1 = W2 = 0.4 mm. The fine model is simulated in Sonnet em 

[11] with a grid of 0.1 mm  0.01 mm. The design specifications are |S21|  –3 dB for 1.8 GHz    

2.2 GHz, and |S21|  –20 dB for 1.0 GHz    1.6 GHz and 2.4 GHz    3.0 GHz. The evaluation time of 
the fine model is 27 minutes. The evaluation time of the fine model with the tuning ports is 11 hours. 

For comparison purposes we consider both the ETSM and FETSM algorithms. The tuning model for 

the ETSM algorithm is shown in Fig. 7(b). In the case of the FETSM algorithm, the tuning model is 
constructed using the S-parameters of the reduced structure shown in Fig. 8(a) along with appropriate 

tuning elements, leading to the circuit of Fig. 8(b). Note that the reduced structure has a smaller number 

of co-calibrated ports (simulation time only 38 minutes).  

Figure 9(a) shows the fine and tuning model responses at the initial design x
(0)

 = [14.6 15.3 0.56 0.53]
T
 

mm. The misalignment between the models is reduced as in (6) using the additive perturbations of the 

design variables, dL1, dL2, dS1, and dS2, as the parameters p. The tuning model response after performing (6) 

is also shown in Fig. 9(a). Figure 9(b) shows the fine model response after 2 iterations of the FETSM 
algorithm at x

(2)
 = [14.9 14.7 0.41 0.86]

T
 mm. The optimization results for ETSM and FETSM are 

summarized in Table 1. The quality of the final design is quite similar for both algorithms, which indicates 

that it is indeed sufficient to simulate the reduced structure to maintain the prediction capability of the tuning 
model. On the other hand, the computational cost is substantially lower for FETSM. 
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Fig. 7. Third-order Chebyshev filter: (a) geometry and the places for inserting the tuning ports for ETSM 

algorithm [9], (b) tuning model for ETSM algorithm (Agilent ADS). 
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Fig. 8. Third-order Chebyshev filter: (a) reduced structure and the places for inserting the tuning ports for FETSM 

algorithm, (b) tuning model for FETSM algorithm (Agilent ADS). 
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Fig. 9. Third-order Chebyshev filter optimized using FETSM: (a) responses at the initial design: fine model (solid 

line), tuning model (dashed lined), tuning model after the alignment procedure (2) (dotted line), (b) responses at the 

final design: the fine model (solid line) and the tuning model after the alignment procedure (dashed lined). 
 

Table 1: Third-order Chebyshev filter: ETSM and FETSM optimization results 

Algorithm 

Optimization Results Optimization Cost* 

Number  

of Iterations 

Specification  

Error 

Total Time  

[hours] 

Relative Cost  

(# of Rf evaluations) 

ETSM 2 –1.7 dB 23.3 51.0 

FETSM 2 –1.7 dB 1.5 3.4 
* Excluding the fine model evaluation at the initial design. 

 

4. Conclusion 
 

We have reviewed tuning space mapping algorithms. Three variants of TSM have been discussed, 

including TSM with Type-0 and Type-1 embedding (ETSM), as well as a fast version of ETSM. 
Advantages and disadvantages of these techniques have been discussed along with illustrative examples. 
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