

100 Elwood Davis Road ♦ North Syracuse, NY 13212 ♦ USA

 Guide to Third Party Libraries
©2011 Sonnet Software, Inc.

Sonnet is a registered trademark

of Sonnet Software, Inc.

Specialists in High-Frequency Electromagnetic Software

(315) 453-3096 Fax: (315) 451-1694 http://www.sonnetsoftware.com

http://www.sonnetsoftware.com/

In this tutorial we will open a Sonnet project that already has a throughline, then we will generate

several projects with different length stubs, we will simulate the designs and determine which

length has the lowest return loss at 5 Ghz.

The .m file for this tutorial can be found in

<SonnetLab directory>\Tutorials\Stub Optimization\StubOptimization.m

The first thing we do in this tutorial is set some parameters that will be used for the optimization. In

the following three lines we will set a variable for the minimum length of the stub, the maximum

length of the stub and the number of iterations we should attempt. The user may modify these

values to be whatever values they like but be aware that if the maximum length value is too large

the stub may extend outside of the box.

aMaxIterations=10;

aMinStubLength=75;

aMaxStubLength=100;

Next we will define two more variables that will aid us in the optimization routine. These values

will not need to be changed by the user. These variables simply keep track of which design has the

lowest return loss.

aCircuitWithBestLoss=0;

aBestLossSoFar=inf;

The script then enters the main optimization loop where aMaxIterations number of designs are

generated, simulated and analyzed. The optimization loop will open the Sonnet project

'Optimization_Start.son' which is our starting design.

Project=SonnetProject('Optimization_Start.son');

The starting design has the desired stackup, a throughline and two ports on either side of the

throughline. The optimization routine needs to add a stub, of a particular length, to the throughline.

Before we add the stub we need to determine an appropriate length for the stub:

aLength=randi([aMinStubLength aMaxStubLength],1);

The coordinates of the polygon verticies can be expressed in terms of aLength and the polygon can

be added to the project with a call to the addMetalPolygonEasy() method.

 anArrayOfXCoordinates=[70;90;90;70];

 anArrayOfYCoordinates=[130;130;130-aLength;130-aLength];

 Project.addMetalPolygonEasy(0,anArrayOfXCoordinates,anArrayOfYCoordinates);

At this point we have successfully modified our initial design project and need to save the project

before simulating. If we call the save() or simulate() methods they will save the project over the

original design file ('Optimization_Start.son'); this is undesirable because we don't want to

modify our initial design file. We can save the project under a new filename by using the saveAs()

method. After the saveAs() method is called any subsequent calls to save() or simulate() will use

the new filename for the project rather than the original filename. We want a new Sonnet project

file for each iteration of our simulation so we will use the following lines to generate a new

filename and save the project:

aFilename=['Optimization_iteration_' num2str(iCounter) '.son'];

Project.saveAs(aFilename);

The above command will save the Sonnet project specified by the variable Project to the hard drive

as the file 'Optimization_iteration_#.son'.

Now that we have specified the simulation settings we can call Sonnet's simulation engine to

simulate the project using the command:

Project.simulate();

The easiest way to analyze the results of an em simulation is to have the project export a touchstone

file and read the data using a touchstone reader. This tutorial will use the third party touchstone

reader included with SonnetLab; users can use any touchstone reader they like to parse the

touchstone data.

 aSnPFilename=['Optimization_iteration_' num2str(iCounter) '.s2p'];

 [F, Data, Zo, DataCell] = TouchstoneRead(aSnPFilename);

The S11 data returned by the TouchstoneRead() function can be converted into dB using the

following line:

aLossOfCurrentIteration=20*log10(abs(permute(Data(1,1,:),[3 2 1])));

Our optimization goal is to minimize the return loss at 5 Ghz. We will want to compare the return

loss of the current iteration of the optimization to the return loss of the best iteration we have

encountered so far; this will make it easy to keep track of which circuit design iteration has the

lowest return loss. We can accomplish this task with the following lines:

 if aLossOfCurrentIteration < aBestLossSoFar

 aCircuitWithBestLoss=iCounter;

 aBestLossSoFar=aLossOfCurrentIteration;

 end

That is the end of our optimization routine. The script will analyze the desired number of circuits

and eventually leave the optimization routine with a value for the best circuit design. All that we

have to do after that is tell the user which iteration was best and to copy the file from the best

iteration and call it 'Optimization_End.son'.

This concludes the first example of how to optimize a circuit design using Matlab. SonnetLab

makes it trivial to open project files, modify project settings, simulate project files and analyze

simulation results.

