

100 Elwood Davis Road ♦ North Syracuse, NY 13212 ♦ USA

 SonnetLab Method Reference
©2011 Sonnet Software, Inc.

Sonnet is a registered trademark

of Sonnet Software, Inc.

Specialists in High-Frequency Electromagnetic Software

(315) 453-3096 Fax: (315) 451-1694 http://www.sonnetsoftware.com

http://www.sonnetsoftware.com/

Method Reference

Version 4.0

Interface Method List

This document contains the help notes for the methods available in the SonnetLab toolbox for

Matlab (from here on called SonnetLab). Users may retrieve the help information for individual

methods by typing 'help SonnetProject.<FunctionName>' into the Matlab command window.

SonnetProject Create a new Sonnet project object

 SonnetProject() Initializes an object to represent a Sonnet project.

 This Sonnet project has the same default settings as what would be generated

 by Sonnet when creating a new geometry project.

 SonnetProject('project.son') Initializes an object to represent a Sonnet

 project. This project object will import all its settings from the

 specified Sonnet project file. The constructor will read the Sonnet

 project information from the file and assign it to the properties of

 the class instantiation.

 See also SonnetProject

 addAbsEntryFrequencySweep Adds an 'ABSENTRY' type of sweep to the project

 Project.addAbsEntryFrequencySweep(StartFrequency,EndFrequency) adds a

 'ABSENTRY' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'ABSENTRY' type of sweep to the project.

 % the sweep will go from 5 to 10.

 Project.addAbsEntryFrequencySweep(5,10);

 See also SonnetProject/addFrequencySweep

 addAbsFmaxFrequencySweep Adds an 'ABSFMAX' type of sweep to the project

 Project.addAbsFmaxFrequencySweep(StartFrequency,EndFrequency,Maximum) adds a

 'ABSFMAX' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'ABSFMAX' type of sweep to the project.

 % the sweep will go from 5 to 10 looking for a

 % max value of 5.

 Project.addAbsFmaxFrequencySweep(5,10,'S11');

 See also SonnetProject/addFrequencySweep

 addAbsFminFrequencySweep Adds an 'ABSFMIN' type of sweep to the project

 Project.addAbsFminFrequencySweep(StartFrequency,EndFrequency,Minimum) adds a

 'ABSFMIN' type of frequency sweep to the project.

Method Reference

Version 4.0

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'ABSFMIN' type of sweep to the project.

 % the sweep will go from 5 to 10 looking for a

 % min value of 5.

 Project.addAbsFminFrequencySweep(5,10,'S11');

 See also SonnetProject/addFrequencySweep

 addAbsFrequencySweep Adds an 'ABS' type of sweep to the project

 Project.addAbsFrequencySweep(StartFrequency,EndFrequency) adds an

 'ABS' type of frequency sweep to the project.

 This function will change the selected frequency sweep to 'ABS'.

 Example usage:

 % Add an 'ABS' type of sweep to the project.

 % the sweep will go from 5 to 10.

 Project.addAbsFrequencySweep(5,10);

 See also SonnetProject/addFrequencySweep

 addAnchoredDimensionParameter Adds a dimension parameter

 Project.addAnchoredDimensionParameter(...) will add an anchored

 geometry dimension parameter to the project.

 addDimensionParameter eight arguments:

 1) The parameter name (Ex: 'Width')

 2) Handle for first reference polygon or the polygon's ID

 3) The vertex number used for the first reference polygon

 4) Handle for second reference polygon or the polygon's ID

 5) The vertex number used for the second reference polygon

 6) A cell array of any polygons that have points that should

 be altered by this dimension parameter. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array.

 7) A cell array of vectors that indicate which vertices of

 the polygon should be altered. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array.

 8) The direction of movement; this may be 'x','X', or 'XDir'

 for the X direction and 'y','Y', or 'YDir' for the Y

 direction.

 9) (Optional) The equation that should be used.

 Note: This method is only for geometry projects.

 Note: This method will add dimension parameters to a project.

 To modify the value of a dimension parameter use the

 modifyVariableValue method.

 Example usage:

 Example 1:

 % We have a polygon in a project and we want to alter its

Method Reference

Version 4.0

 % width with a dimension parameter. This particular polygon

 % has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The polygon has an ID of seven. The polygon

 % looks like the following diagram with the vertices numbered.

 % We want the polygon to grow/shrink on the right hand side

 % (coordinates 2 and 3) while keeping the left hand

 % (coordinates 1 and 4) constant.

 %

 % 4-----3

 % | |

 % | |

 % | |

 % 1-----2

 %

 % To accomplish our goal we can add a dimension parameter

 % to the project. The parameter will be named 'Width' and

 % be attached to the polygon with an ID of seven. The first

 % reference vertex will be the first vertex of the desired

 % polygon and the second vertex value will be the second

 % vertex of the polygon. The two reference points signify

 % a move in the X direction.

 %

 % Now we will add some polygons that have altering points

 % to the point set. In this case we want to alter the points

 % on the right hand side of the polygon. The second

 % reference point already corresponds to one of the points;

 % the second point we want to select for movement is the

 % first coordinate of the polygon.

 Project.addAnchoredDimensionParameter('Width',7,3,7,2,7,1,'x');

 % Alternately, the polygon's coordinates could have been selected

 % easier with the polygon methods lowerRightVertex(), lowerLeftVertex(),

 % upperRightVertex(), upperLeftVertex(). These methods will return

 % the index of the coordinate that is at the desired location of

 % the polygon. The polygon coordinate methods are intended for

 % rectangular polygons only. Using the polygon coordinate access

 % methods on non-rectangular polygons could potential yield

 % undesirable results (Example: what is the lower left corner

 % of a spiral? lowerLeftVertex() will return the best value it

 % can but the user should be aware that in that case they may

 % be better off specifying the coordinate manually). In order

 % to use methods such as lowerRightVertex() we will need to

 % obtain a reference to the desired polygon; this can be

 % accomplished using the findPolygonUsingId() method.

 [~, polygon]=Project.findPolygonUsingId(7);

 Project.addAnchoredDimensionParameter('Width',...

 polygon,polygon.lowerLeftVertex(),...

 polygon,polygon.lowerRightVertex(),...

 polygon,polygon.upperRightVertex(),'x');

 Example 2:

 % We have two polygons in a project and we want to alter

 % their separation with a dimension parameter. The left

 % polygon has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The right polygon has coordinate values

 % of (50,10),(80,10),(80,30),(70,30),(70,40),(50,40). The left polygon

 % has an ID of seven and the right polygon has an ID of eight.

 % The polygon layout looks like the following diagram with the vertices

 % numbered. We want the right polygon to move closer or farther

 % away from the fixed left polygon.

 %

 % 4-----3 6-----5

Method Reference

Version 4.0

 % | | | |__3

 % | | | 4 |

 % | | | |

 % 1-----2 1--------2

 %

 % To accomplish our goal we will add a dimension parameter. We

 % will call our parameter 'Sep'. The first reference point will

 % be attached to vertex number two of the left polygon (ID of seven)

 % and the second reference point will be attached to vertex

 % number one of the right polygon (ID of eight).

 %

 % Now we will add some polygons that have altering points

 % to the point set. In this case we want to alter the all

 % the points for the polygon on the right. We may indicate

 % that all the points in the polygon should be altered by

 % not specifying which points in the polygon should be altered.

 Project.addAnchoredDimensionParameter('Sep',7,2,8,1,8,[],'x');

 Example 3:

 % We have three polygons in a project and we want to alter the seperation

 % between the right two polygons and the left most polygon. The left

 % polygon has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The middle polygon has coordinate values

 % of (50,10),(80,10),(80,30),(70,30),(70,40),(50,40). The polygon on

 % the right has coordinate values of (90,10),(120,10),(120,30),(110,30),

 % (110,40),(90,40). The left polygon has an ID of seven, the middle

 % polygon has an ID of eight and the right polygon has an ID of nine.

 % The polygon layout looks like the following diagram with the vertices

 % numbered. We want the middle and right polygons to move closer or farther

 % away from the fixed left polygon.

 %

 % 4-----3 6-----5 6-----5

 % | | | |__3 | |__3

 % | | | 4 | | 4 |

 % | | | | | |

 % 1-----2 1--------2 1--------2

 %

 % To accomplish our goal we will add a dimension parameter. We

 % will call our parameter 'Sep'. The first reference point will

 % be attached to vertex number two of the left polygon (ID of seven)

 % and the second reference point will be attached to vertex

 % number one of the middle polygon (ID of eight).

 %

 % Now we will add some polygons that have altering points

 % to the point set. In this case we want to alter the all

 % the points for the middle polygon and the right polygon.

 % Because more than one polygon is to be modified we must

 % put the polygons and vertices in cell arrays. Because the

 % entire polygons should be moved the vertices may be specified

 % by the empty set ([]); in this example we will explicitly state

 % the vertices anyway so that the user can see how to indicate

 % individual vertices.

 aArrayOfPolygons{1}=8;

 aArrayOfPolygons{2}=9;

 aArrayOfPoints{1}=[1 2 3 4 5 6];

 aArrayOfPoints{2}=[1 2 3 4 5 6];

Project.addAnchoredDimensionParameter('Sep',7,2,8,1,aArrayOfPolygons,aArrayOfPoints,'x')

;

Method Reference

Version 4.0

 addAnisotropicDielectricLayer Add an anisotropic dielectric layer to the project

 Project.addAnisotropicDielectricLayer(...) will add a dielectric

 layer to the top of the project.

 If the layer is anisotropic then it requires the

 following arguments:

 1) Name Of the Dielectric Layer

 2) Thickness of the layer

 3) Relative Dielectric Constant

 4) Relative Magnetic Permeability

 5) Dielectric Loss Tangent

 6) Magnetic Loss Tangent

 7) Dielectric Conductivity

 8) Relative Dielectric Constant For Z Direction

 9) Relative Magnetic Permeability For Z Direction

 10) Dielectric Loss Tangent For Z Direction

 11) Magnetic Loss Tangent For Z Direction

 12) Dielectric Conductivity For Z Direction

 13) Number Of Z-Partitions (Optional)

 Note: This method is only for geometry projects.

 Example usage:

 % Add a new dielectric layer to the project. The layer

 % is 10 units thick, has a relative dielectric constant

 % of 1, a relative magnetic permeability of 1,

 % a dielectric loss tangent of 0, a magnetic loss

 % tangent of 0, an dielectric conductivity of 0.

 % The Z direction has a relative dielectric constant

 % of 1, a dielectric loss tangent of 1, a magnetic

 % loss tangent of 0, and an dielectric conductivity of 0.

 Project.addAnisotropicDielectricLayer('newLayer',10,1,1,0,0,0,1,1,0,0,0);

 See also SonnetProject/addDielectricLayer

 addCapacitorComponent Add a capacitor component

 Project.addCapacitorComponent(...) adds an ideal capacitor

 component to a geometry project.

 addCapacitorComponent takes the following arguments:

 1) The component name (Ex: 'C1')

 2) The capacitor value (Ex: 50)

 3) Level number

 4) A 2x2 matrix of the component port locations.

 The first row should be the first port's X value, then its Y value

 The second row should be the second port's X value, then its Y value

 5) (Optional) The terminal width

 This value should be either

 - "Feed" to use the feedline width (Default)

 - "Cell" for one cell width

 - A number which represents a custom width

 Note: This method is only for geometry projects.

 Note: This method will add components to a project.

 To modify the value of a component use the

 modifyComponentValue method.

 Example usage:

 Project.addCapacitorComponent('C1',50,0,[104.5 156; 104.5 189])

 Project.addCapacitorComponent('C2',50,0,[104.5 156; 104.5 189],5)

 Project.addCapacitorComponent('C3',50,0,[104.5 156; 104.5 189],'Feed')

Method Reference

Version 4.0

 Project.addCapacitorComponent('C4',50,0,[104.5 156; 104.5 189],'1Cell')

 addCapacitorElement Creates a capacitor element

 Project.addCapacitorElement(Node1,Node2,Capacitance) will add

 an capacitor element to the circuit between Node1 and Node2 with

 the specified capacitance. If the second node of the capacitor

 should not be attached to any node then Node2 should be [].

 Project.addCapacitorElement(Node1,Node2,Capacitance,Network) will add

 an capacitor element to the specified network of the circuit between

 Node1 and Node2 with the specified capacitance. If the second node

 of the capacitor should not be attached to any node then Node2 should

 be []. The network selection may be the network's index or the

 network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a capacitor element to the first network

 % in the project. The capacitor is connected

 % from node 1 to 2 with capacitance of 50

 Project.addCapacitorElement(1,2,50);

 % Add a capacitor element to the second network

 % in the project. The capacitor is connected

 % from node 1 to 2 with capacitance of 50

 Project.addCapacitorElement(1,2,50,2);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement,

 SonnetProject/addNetworkElement

 addCoCalibratedGroup Add a co-calibrated port group

 Project.addCoCalibratedGroup(name,GroundReference,TerminalWidthType) will

 add an co-calibration group to the array of co-calibration groups.

 Note: This method is only for geometry projects.

 Example usage:

 Project.addCoCalibratedGroup('A','B','FEED');

 See also SonnetProject/addPort, SonnetProject/addPortCocalibrated

 addDataFileComponent Add a data file component

 Project.addDataFileComponent(...) adds a data

 file component to a geometry project.

 addDataFileComponent takes the following arguments:

 1) The component name (Ex: 'R1')

 2) The data file name (Ex: 'Project.s2p')

 3) Level number

 4) A 2x2 matrix of the component port locations.

 The first row should be the first port's X value, then its Y value

Method Reference

Version 4.0

 The second row should be the second port's X value, then its Y value

 5) (Optional) The terminal width

 This value should be either

 - "Feed" to use the feedline width (Default)

 - "Cell" for one cell width

 - A number which represents a custom width

 Note: This method is only for geometry projects.

 Note: This method will add components to a project.

 To modify the value of a component use the

 modifyComponentValue method.

 Example usage:

 Project.addDataFileComponent('DF1',50,0,[104.5 156; 104.5 189])

 Project.addDataFileComponent('DF2',50,0,[104.5 156; 104.5 189],5)

 Project.addDataFileComponent('DF3',50,0,[104.5 156; 104.5 189],'Feed')

 Project.addDataFileComponent('DF4',50,0,[104.5 156; 104.5 189],'1Cell')

 addDataResponseFileElement Creates a data response file element

 Project.addDataResponseFileElement(Filename,PortNodes) will

 add an SnP file to the circuit connected to the ports

 specified by PortNodes.

 Project.addDataResponseFileElement(Filename,PortNodes,Network) will

 add an SnP file to the circuit connected to the ports specified

 by PortNodes. The network selection may be the network's index

 or the network's name.

 Project.addDataResponseFileElement(Filename,PortNodes,Network,GroundNode)

 will add an SnP file to the circuit connected to the ports specified

 by PortNodes and grounded at the specified ground node number. The

 network selection may be the network's index or the network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a data response file element to the first network of the project

 Project.addDataResponseFileElement('data.s2p',[1,2]);

 % Add a data response file element to the second network of the project

 Project.addDataResponseFileElement('data.s2p',[1,2],2);

 % Add a data response file element to the second network of the project

 % and has its ground reference node connected to node 1.

 Project.addDataResponseFileElement('data.s2p',[1,2],2,1);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addProjectFileElement,

 SonnetProject/addNetworkElement

 addDcFrequencySweep Adds an 'DC' type of sweep to the project

 Project.addDcFrequencySweep('AUTO') adds an automatic 'DC'

 type of frequency sweep to the project.

 Project.addDcFrequencySweep('MAN',Frequency) adds an manual

Method Reference

Version 4.0

 'DC' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an automatic DC frequency sweep to the project

 Project.addDcFrequencySweep('AUTO');

 % Add a manual DC frequency sweep to the project with frequency 5

 Project.addDcFrequencySweep('MAN',5);

 See also SonnetProject/addFrequencySweep

 addDielectricBrick Add a dielectric brick polygon to the polygon array

 Project.addDielectricBrick(...) will add an polygon

 to the array of polygons.

 addDielectricBrick requires these arguments:

 1) metallization Level Index (The level the polygon is on)

 2) The material used for the polygon. This may either

 be a the index for the brick material type in the

 array of brick types, Or the name of the material

 (Ex: 'Air'). Air is not in the array of isotropic

 or anisotropic materials but can be selected by

 either passing 0 or 'Air'.

 3) Minimum subsection size in X direction

 4) Minimum subsection size in Y direction

 5) Maximum subsection size in X direction

 6) Maximum subsection size in Y direction

 7) The Maximum Length For The Conformal Mesh Subsection

 8) Edge mesh setting. Y indicates edge meshing is on for this

 polygon. N indicates edge meshing is off.

 9) A matrix for the X coordinate values

 10) A matrix for the Y coordinate values

 Note: Many users will prefer to use the 'addDielectricBrickEasy' method.

 Note: This method is only for geometry projects.

 Example usage:

 % metal at level 0, material type 0 (Air),

 % X subsection size from 0 to 50,

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addDielectricBrick(0,0,0,0,50,100,0,'Y',x,y);

 % metal at level 0, material type Brick1,

 % X subsection size from 0 to 50,

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addDielectricBrick(0,'Brick1',0,0,50,100,0,'Y',x,y);

 See also SonnetProject/addDielectricBrickEasy

 addDielectricBrickEasy Add a dielectric brick polygon to the polygon array

 Polygon=Project.addDielectricBrickEasy(...) will add a dielectric brick

Method Reference

Version 4.0

 to the array of polygons. A reference to the polygon

 is returned.

 addDielectricBrickEasy requires these arguments:

 1) metallization Level Index (The level the polygon is on)

 2) A column vector for the X coordinate values

 3) A column vector for the Y coordinate values

 4) (Optional) The material used for the polygon. This may

 either be a the index for the brick material type in

 the array of brick types, or the name of the material

 (Ex: 'Air'). If this value is not specified the

 function will use 'Air'.

 Note: This method is only for geometry projects.

 Example usage:

 % Build a brick on layer zero of type 'Air'

 Project.addDielectricBrickEasy(0,[5,10,10,5,5],[10,10,20,20,10]);

 % Build a brick on layer zero of type 'Brick1'

 Project.addDielectricBrickEasy(0,[5,10,10,5,5],[10,10,20,20,10],'Brick1');

 See also SonnetProject/addDielectricBrick

 addDielectricLayer Add a dielectric layer to the project

 Project.addDielectricLayer(...) will add a dielectric layer

 to the top of the stackup (the end of the array of dielectric

 layers).

 There are two ways to use addDielectricLayer. The user

 may define a layer using a set of custom options or

 the user may define a using a predefined property set

 from the Sonnet library.

 Users may use addDielectricLayer to add a custom dielectric

 layer to the project using the following parameters:

 1) Name Of the Dielectric Layer

 2) Thickness of the layer

 3) Relative Dielectric Constant

 4) Relative Magnetic Permeability

 5) Dielectric Loss Tangent

 6) Magnetic Loss Tangent

 7) Dielectric Conductivity

 8) Number Of Z-Partitions (Optional)

 Users may add a layer based on an entry from the Sonnet

 library by using the following parameters:

 1) The name of the material (Ex: "Rogers RT6006")

 2) Thickness of the layer

 If no dielectric layer exists in the SonnetLibrary

 with the specified name then an error will be thrown.

 Note: This method is only for geometry projects.

 Example usage:

 % Add a new dielectric layer to the project. The layer

 % is 10 units thick, has a relative dielectric constant

 % of 1, a relative magnetic permeability of 1,

 % a dielectric loss tangent of 0, a magnetic loss

 % tangent of 0, an dielectric conductivity of 0.

 Project.addDielectricLayer('newLayer',10,1,1,0,0,0);

Method Reference

Version 4.0

 % This layer is the same as the one above but

 % it specifies that there are 2 Z-partitions.

 Project.addDielectricLayer('newLayer2',10,1,1,0,0,0,2);

 % This layer uses Rogers RT6006

 Project.addDielectricLayer('Rogers RT6006',50);

 See also SonnetProject/addAnisotropicDielectricLayer

 addEdgeVia Add a new edge via

 Project.addEdgeVia(Polygon,EdgeNumber,Level) will add an Edge Via

 to a polygon in the project. Polygon may be either a reference

 to a polygon object or the polygon's ID. The via is placed on

 the polygon edge between the specified number and the next number.

 For example, if vertex 3 is specified, the via extends from

 vertex 3 to vertex 4 on the polygon. Level should be either

 the index of the metallization level the via should be attached

 to or 'GND' or 'TOP'.

 Note: This method is only for geometry projects.

 Example usage:

 % Add an edge via to the polygon with

 % debug ID 8 at vertex number 1. The via

 % will be connected to layer 0.

 Project.addEdgeVia(8,1,0);

 % Add an edge via to the polygon with

 % debug ID 8 at vertex number 2. The via

 % will be connected to 'GND'.

 Project.addEdgeVia(8,2,'GND');

 addEsweepFrequencySweep Adds an 'ESWEEP' type of sweep to the project

 Project.addEsweepFrequencySweep(StartFrequency,EndFrequency,NumberOfPoints)

 adds a 'ESWEEP' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'ESWEEP' type of sweep to the project.

 % the sweep will go from 5 to 10 with 5 points.

 Project.addEsweepFrequencySweep(5,10,5);

 See also SonnetProject/addFrequencySweep

 addFileOutput Create a new output file

 Project.addFileOutput(...) will add another output file to the

 project. This method takes the following arguments:

 1) A string to represent the File Type as follows:

 File Type Entry Definition

 TS Touchstone

 DATA_BANK Databank

Method Reference

Version 4.0

 SC SCompact

 CSV Spreadsheet

 CADENCE Cadence

 MDIF MDIF (S2P)

 EBMDIF MDIF (ebridge)

 NCLINE RLGC

 2) The Network Name to be exported (only applies to Netlist). If you want

 the output of all networks then have this argument be the empty string

 (''). This parameter can be completely ignored in most cases.

 3) Whether or not to embed. This field is “D” for de-embedded data

 or “ND” for non-de-embedded data.

 4) This field is “Y” to include the ABS adaptive data or “N” to

 include only the discrete data.

 5) The filename consists of a basename and extension. If the basename

 of the project file is used, the variable “$BASENAME” may be

 substituted in the filename. For example, in the project file

 steps.son if an output file steps.s2p is entered, the filename

 would appears as “$BASENAME.s2p” in the fileout block. The user may

 enter any filename they wish and is not restricted in their

 use of extensions.

 6) This field is “NC” for no comments or “IC” to include comments.

 7) This field is 'Y' if the output is high precision and 'N' if not.

 8) This field is “S” for S-Parameters, “Y” for Y-Parameters,

 and “Z” for Z-Parameters. This value is 'SPECTRE'

 for NCLINE (RLGC) file outputs. If the output is

 NCLINE then do not include any of the below

 arguments.

 9) The form for the Parameter has the following entry possibilities

 MA - Mag-Angle

 DB - DB-Angle

 RI - Real-Imaginary

 10) The PortType should be one of the following

 R If all ports in the circuit use real impedance

 with the same resistance and all other values 0

 Z If all ports in the circuit use complex impedance

 with the same resistance and all other values 0

 TERM If a port or ports in the circuit have a non-zero value

 for either the Resistance or Reactance

 FTERM If a port or ports in the circuit have a non-zero value

 for the Resistance or Reactance and either

 the inductance or capacitance

 If the port type was resistor

 11) One or more Resistance values stored as a matrix

 If the port type was complex impedance

 11) One or more Resistance values stored as a matrix

 12) One or more ImaginaryResistance

 If the port type was TERM

 11) One or more Resistance values stored as a matrix

 12) One or more Reactance values stored as a matrix

Method Reference

Version 4.0

 If the port type was FTERM

 11) One or more Resistance values stored as a matrix

 12) One or more Reactance values stored as a matrix

 13) One or more Inductance values stored as a matrix

 14) One or more Capacitance values stored as a matrix

 Example usage:

 % Add a new touchstone file output to the project

 % the name out the outputted file will be the name

 % name of the project ('BASENAME' gets replaced

 % with the project name automatically)

 Project.addFileOutput('TS','D','Y','$BASENAME.s1p','IC','N','S','MA','R',20);

 See also SonnetProject/addFileOutputForNetlist,

 SonnetProject/addFileOutputForGeometry

 addFileOutputForGeometry Create a new output file

 Project.addFileOutputForGeometry(...) will add another output file to the

 project. This method was not meant to be called

 directly; please use addFileOutput instead to make

 sure the project is a geometry project.

 Type 'help SonnetProject.addFileOutput' for arguments and more information.

 See also SonnetProject/addFileOutput, SonnetProject/addFileOutputForNetlist

 addFileOutputForNetlist Create a new output file

 Project.addFileOutputForNetlist(...) will add another output file to the

 project. This method was not meant to be called

 directly; please use addFileOutput instead to make

 sure the project is a netlist project.

 Type 'help SonnetProject.addFileOutput' for arguments and more information.

 See also SonnetProject/addFileOutput, SonnetProject/addFileOutputForGeometry

 addFrequencySweep Adds a frequency sweep to the project

 Project.addFrequencySweep(SweepName,...) adds a frequency sweep

 to the project. addFrequencySweep requires a string specifying the type

 of frequency sweep to be added to the project and

 all of the arguments necessary in order to construct

 the sweep.

 Types and arguments are as follows:

 SWEEP StartFrequency,EndFrequency,StepFrequency

 ABS StartFrequency,EndFrequency

 ABSENTRY StartFrequency,EndFrequency

 ABSFMAX StartFrequency,EndFrequency,Maximum

 ABSFMIN StartFrequency,EndFrequency,Minimum

 DC Mode*,Frequency**

 ESWEEP StartFrequency,EndFrequency,AnalysisFrequencies

 LSWEEP StartFrequency,EndFrequency,AnalysisFrequencies

 SIMPLE StartFrequency,EndFrequency,StepFrequency

 STEP StepFrequency

Method Reference

Version 4.0

 * For a DC sweep: mode is either 'AUTO' for automatic or 'MAN' for manual.

 ** For a DC sweep: when mode is 'AUTO' the frequency does not need to

 be supplied. The frequency is required when the DC

 mode is manual.

 When a frequency sweep is added to the project the selected

 frequency sweep to be used for analysis will be automatically

 changed such that the newly created sweep will be the selected

 frequency sweep.

 Example usage:

 % Add an ABS sweep to the project. The new sweep will

 % have the frequency range from 5 to 10 (units are

 % specified in the dimension block)

 Project.addFrequencySweep('ABS',5,10);

 % Add an automatic DC frequency sweep to the project

 Project.addFrequencySweep('DC','AUTO');

 % Add a manual DC frequency sweep to the project with frequency 5

 Project.addFrequencySweep('DC','MAN',5);

 See also SonnetProject/addSweepFrequencySweep,

 SonnetProject/addAbsFrequencySweep,

 SonnetProject/addAbsEntryFrequencySweep,

 SonnetProject/addAbsFmaxFrequencySweep,

 SonnetProject/addAbsFminFrequencySweep,

 SonnetProject/addDcFrequencySweep,

 SonnetProject/addEsweepFrequencySweep,

 SonnetProject/addLsweepFrequencySweep,

 SonnetProject/addSimpleFrequencySweep,

 SonnetProject/addStepFrequencySweep

 addInductorComponent Add a inductor component

 Project.addInductorComponent(...) adds an ideal inductor

 component to a geometry project.

 addInductorComponent takes the following arguments:

 1) The component name (Ex: 'L1')

 2) The inductor value (Ex: 50)

 3) Level number

 4) A 2x2 matrix of the component port locations.

 The first row should be the first port's X value, then its Y value

 The second row should be the second port's X value, then its Y value

 5) (Optional) The terminal width

 This value should be either

 - "Feed" to use the feedline width (Default)

 - "Cell" for one cell width

 - A number which represents a custom width

 Note: This method is only for geometry projects.

 Note: This method will add components to a project.

 To modify the value of a component use the

 modifyComponentValue method.

 Example usage:

 Project.addInductorComponent('L1',50,0,[104.5 156; 104.5 189])

 Project.addInductorComponent('L2',50,0,[104.5 156; 104.5 189],5)

 Project.addInductorComponent('L3',50,0,[104.5 156; 104.5 189],'Feed')

 Project.addInductorComponent('L4',50,0,[104.5 156; 104.5 189],'1Cell')

Method Reference

Version 4.0

 addInductorElement Creates a inductor element

 Project.addInductorElement(Node1,Node2,Inductance) will add

 an inductor element to the circuit between Node1 and Node2 with

 the specified inductance. If the second node of the inductor

 should not be attached to any node then Node2 should be [].

 Project.addInductorElement(Node1,Node2,Inductance,Network) will add

 an inductor element to the specified network of the circuit between

 Node1 and Node2 with the specified inductance. If the second node

 of the inductor should not be attached to any node then Node2 should

 be []. The network selection may be the network's index or the

 network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a inductor element to the first network

 % in the project. The inductor is connected

 % from node 1 to 2 with inductance of 50

 Project.addInductorElement(1,2,50);

 % Add a inductor element to the second network

 % in the project. The inductor is connected

 % from node 1 to 2 with inductance of 50

 Project.addInductorElement(1,2,50,2);

 See also SonnetProject/addResistorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement,

 SonnetProject/addNetworkElement

 addLsweepFrequencySweep Adds an 'LSWEEP' type of sweep to the project

 Project.addLsweepFrequencySweep(StartFrequency,EndFrequency,NumberOfPoints)

 adds a 'LSWEEP' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'LSWEEP' type of sweep to the project.

 % the sweep will go from 5 to 10 with 5 points.

 Project.addLsweepFrequencySweep(5,10,5);

 See also SonnetProject/addFrequencySweep

 addMetalPolygon Add a metal polygon to the polygon array

 Project.addMetalPolygon(...) will add an polygon

 to the array of polygons.

 addMetalPolygon requires these arguments:

 1) metallization Level Index (The level the polygon is on)

 2) The type of metal used for the polygon. This may either

Method Reference

Version 4.0

 be a the index for the metal type in the array of

 metal types, or the name of the metal type

 (Ex: 'Copper'). Lossless metal is not in the array

 of metals but can be selected by either passing 0

 or 'Lossless'.

 3) A string to identify the fill type used for the polygon.

 N indicates staircase fill, T indicates diagonal

 fill and V indicates conformal mesh.

 4) Minimum subsection size in X direction

 5) Minimum subsection size in Y direction

 6) Maximum subsection size in X direction

 7) Maximum subsection size in Y direction

 8) The Maximum Length For The Conformal Mesh Subsection

 9) Edge mesh setting. Y indicates edge meshing is on for this

 polygon. N indicates edge meshing is off.

 10) A column vector for the X coordinate values

 11) A column vector for the Y coordinate values

 Note: Many users will prefer to use the 'addMetalPolygonEasy' method.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % metal at level 0, metal type -1 (lossless),

 % staircase fill, X subsection size from 0 to 50,

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addMetalPolygon(0,0,'N',0,0,50,100,0,'Y',x,y);

 % metal at level 0, metal type 'ThinCopper',

 % staircase fill, X subsection size from 0 to 50,

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addMetalPolygon(0,'ThinCopper','N',0,0,50,100,0,'Y',x,y);

 See also SonnetProject/addMetalPolygonEasy

 addMetalPolygonEasy Add a metal polygon to the polygon array

 Polygon=Project.addMetalPolygonEasy(...) will add an polygon

 to the array of polygons. A reference to the polygon

 is returned.

 addMetalPolygonEasy requires these arguments:

 1) metallization Level Index (The level the polygon is on)

 2) A column vector for the X coordinate values

 3) A column vector for the Y coordinate values

 4) (Optional) The type of metal used for the polygon.

 This may either be a the index for the metal

 type in the array of metal types, or the name

 of the metal type (Ex: 'Copper'). If this value

 is not specified then lossless metal will be used.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

Method Reference

Version 4.0

 % Build a lossless metal polygon on layer zero

 Project.addMetalPolygonEasy(0,[5,10,10,5,5],[10,10,20,20,10]);

 % Build a copper metal polygon on layer zero (the Copper

 % metal type must be defined in the project)

 Project.addDielectricBrickEasy(0,[5,10,10,5,5],[10,10,20,20,10],'Copper');

 See also SonnetProject/addMetalPolygon

 addNetworkElement Creates a network element

 Project.addNetworkElement(...) will add an network element to the circuit

 addNetworkElement takes the following parameters:

 1) The name for the new network

 2) The vector of port numbers

 And then also include one of the following:

 * If you want to define a single real impedance for all the ports then:

 3) the impedance

 * If you want to define a single non-real impedance for all the ports then:

 3) the real component of the impedance

 4) the imaginary component of the impedance

 * If you want to define different resistances and reactances for each port

 then pass the following for an N dimensional network:

 3) An N x 2 matrix with the first column being the

 resistance of the port and the second number

 being the reactance of the port. Each row in

 the matrix should correspond to a single port

 and be specified in the same order as was

 specified in the second argument which was

 an vector of port numbers.

 * If a port or ports in the circuit have non-zero values for either the

 inductance or capacitance then pass the following:

 3) An N x 4 matrix with the first column being the

 resistance of the port, the second number

 being the reactance of the port, the third column

 is for the inductance of the port and the fourth

 is for the capacitance of the port. Each row in

 the matrix should correspond to a single port

 and be specified in the same order as was

 specified in the second argument which was

 an vector of port numbers.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a new network to the project. All ports will

 % have a real impedance of 50.

 Project.addNetworkElement('NetName1',[1 2 3 4],50);

 % Add a new network to the project. All ports will

 % have a real impedance of 50 and an imaginary component

 % of 50.

 Project.addNetworkElement('NetName2',[1 2 3 4],50,50);

 % Add a new network to the project. All ports will

Method Reference

Version 4.0

 % have a differing resistances and reactances.

 Project.addNetworkElement('NetName3',[1 2 3 4],[50 50; 100 100]);

 % Add a new network to the project. All ports will

 % have a differing resistances, reactances,

 % inductances, and capacitances.

 Project.addNetworkElement('NetName4',[1 2 3 4],[50 50 10 10; 100 100 10 10]);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement

 addOptimizationParameter Create a new optimization parameter

 Project.addOptimizationParameter(...) adds a new optimization

 parameter to the optimization block. Optimization

 parameters define how the optimization variables get modified.

 addOptimizationParameter requires the following inputs:

 1) A frequency sweep object. The frequency sweep

 cannot be SonnetFrequencyAbs or SonnetFrequencySimple.

 but SonnetFrequencyAbsEntry and SonnetFrequencySweep

 can be used instead and correspond to the same sweeps.

 2) The response Type (Ex: 'DB[11]')

 3) The relation String ('>', '<', '=')

 4) The type for the target response ('VALUE','NET','FILE').

 This is what the response will be compared to.

 5) The target value. For targets of type 'VALUE' this

 will store the response value we would like

 to obtain from optimization. For 'NET'

 this argument stores the name of the network

 to compare to. For type 'FILE' this stores

 the name of the file that should be used.

 6) If the target type is 'FILE' or 'NET' then

 the response type for the target value is

 required. If the type is 'VALUE' then this

 should be the empty string ('');

 7) The weight for this optimization parameter. This

 value is often 1.

 Example usage:

 % Make an empty frequency sweep

 theSweep=SonnetFrequencyAbsEntry()

 % Assign values to the frequency sweep properties

 theSweep.StartFreqValue=1

 theSweep.EndFreqValue=5

 % Add the optimization parameter to the project

 Project.addOptimizationParameter(theSweep,'[DB[11]','=','VALUE',1,1)

 addParallelSubsection Adds a parallel subsection

 Project.addParallelSubsection(Side,Length) will add a

 specified length Parallel Subsection to the

 project. Side may be 'LEFT', 'RIGHT', 'TOP',

 or 'BOTTOM'.

Method Reference

Version 4.0

 Note: This method is only for geometry projects.

 Example usage:

 % Add a parallel subsection to the 'TOP' of length 12

 Project.addParallelSubsection('TOP',12);

 addPhysicalTransmissionLineElement Creates a physical transmission line element

 Project.addPhysicalTransmissionLineElement(...) will add an physical

 transmission line element to the circuit.

 addPhysicalTransmissionLineElement takes the following parameters:

 1) The first node number to which the line is connected to

 2) The second node number to which the line is connected to

 (If the element is not to be connected to another node

 then pass [] as for the value for the second node number)

 3) The value for the impedance of the line

 4) The value for the length of the line

 5) The value for the frequency of the line

 6) The value for the eeff of the line

 7) The value for the attenuation of the line

 8) (Optional) The index of the network in the array of networks

 If this is not specified the element will be added to the

 first network.

 9) (Optional) The node number that acts as ground for the line.

 In order to specify a ground node the user must specify

 the network (argument number 8 must be included in order to

 specify argument number 9)

 Note: This method is only for netlist projects.

 Example usage:

 % Add a physical transmission line element to the first

 % network of the project. The transmission line will be

 % connected from node 1 to 2 with an impedance of 100,

 % a length of 1000, a frequency of 10, an eeff of 1,

 % and an attenuation of 10.

 Project.addPhysicalTransmissionLineElement(1,2,100,1000,10,1,10);

 % Add a physical transmission line element to the second

 % network of the project. The transmission line will be

 % connected from node 1 to 2 with an impedance of 100,

 % a length of 1000, a frequency of 10, an eeff of 1,

 % and an attenuation of 10.

 Project.addPhysicalTransmissionLineElement(1,2,100,1000,10,1,10,2);

 % Add a physical transmission line element to the second

 % network of the project. The transmission line will be

 % connected from node 1 to 2 with an impedance of 100,

 % a length of 1000, a frequency of 10, an eeff of 1,

 % and an attenuation of 10. The transmission line will

 % grounded at port 1.

 Project.addPhysicalTransmissionLineElement(1,2,100,1000,10,1,10,2,1);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement,

Method Reference

Version 4.0

 SonnetProject/addNetworkElement

 addPolygon Adds a polygon object to the project

 Project.addPolygon(Polygon) will add the passed

 polygon to the end of the array of polygons.

 Note: This method is only for geometry projects.

 See also SonnetProject/viewCurrents,

 SonnetProject/enableCurrentCalculations

 addPort Add a port to the project

 Port=Project.addPort(...) will add a port to the project.

 This method is only for geometry projects. A reference to

 the new port is returned.

 addPort requires a type as

 the first argument which should

 be one of the following:

 STD - Standard Port

 AGND - Auto Grounded Port

 CUP - Co-Calibrated Port

 Then you will need to supply the necessary

 arguments for each as follows:

 STD - Standard Port

 1) The Polygon to which the port is attached.

 This can be replaced by the polygon's

 debug ID value.

 2) The Vertex to which the polygon is attached

 3) The Resistance for the port

 4) The Reactance for the port

 5) The Inductance for the port

 6) The capacitance for the port

 7) The Port Number (Optional)

 AGND - Auto Grounded Port

 1) The Polygon to which the port is attached.

 This can be replaced by the polygon's

 debug ID value.

 2) The Vertex to which the polygon is attached

 3) The Resistance for the port

 4) The Reactance for the port

 5) The Inductance for the port

 6) The capacitance for the port

 7) A character string which identifies a

 reference plane for the autogrounded port.

 This value is FIX for a reference

 plane and NONE for a calibration length.

 8) A floating point number which provides the

 length of the reference plane when the type

 is FIX and provides the calibration length

 when the type is NONE.

 9) The Port Number(Optional)

 CUP - Co-calibrated Port

 1) The Polygon to which the port is attached.

 This can be replaced by the polygon's

Method Reference

Version 4.0

 debug ID value.

 2) The Name of the group to which it belongs

 2) The Vertex to which the polygon is attached

 4) The Resistance for the port

 5) The Reactance for the port

 6) The Inductance for the port

 7) The capacitance for the port

 8) The Port Number (Optional)

 Note: This method is only for geometry projects.

 Example usage:

 % Add a standard port

 Project.addPort('STD',11,1,75,0,0,0);

 % Add an autogrounded port

 Project.addPort('AGND',11,1,50,0,0,0,'FIX',10);

 % Add an co-calibrated port

 PortReference=Project.addPort('CUP',11,'A',1,75,0,0,0);

 See also SonnetProject/addPortToPolygon, SonnetProject/addPortCocalibrated,

 SonnetProject/addPortAtLocation, SonnetProject/addPortStandard,

 SonnetProject/addPortAutoGrounded

 addPortAtLocation Add a port to the project

 Port=Project.addPortAtLocation(X,Y) will add an standard port

 to the project by specifying an X and Y coordinate.

 The function will find the closest polygon edge and

 place the port there. A reference to the new port is returned.

 Port=Project.addPortAtLocation(X,Y,Level) will add an standard port

 to the project by specifying an X and Y coordinate.

 The function will find the closest polygon edge and

 place the port there. Only polygons on the specified

 level will be checked. A reference to the new port is returned.

 Note: This method is only for geometry projects.

 Note: If the distance between the closest edge and the port

 location is more than 5% of the average of the length

 and width of the box then the port will not be placed

 and an error will be thrown.

 Example usage:

 % Add a standard port

 Port=Project.addPortAtLocation(330,200);

 See also SonnetProject/addPort, SonnetProject/addPortToPolygon,

 SonnetProject/addPortCocalibrated, SonnetProject/addPortStandard,

 SonnetProject/addPortAutoGrounded

 addPortAutoGrounded Add a port to the project

 Port=Project.addPortAutoGrounded(...) will add an autogrounded port

 to the array of ports. A reference to the new port is returned.

 It requires the following arguments:

 1) The Polygon to which the port is attached (or its debugID)

 2) The Vertex to which the polygon is attached. The vertex number

 should be the index for the first vertex number that

 defines the polygon edge; if the user would like to

Method Reference

Version 4.0

 attach a port between the third and fourth (X,Y)

 coordinate points for a polygon then the vertex

 number should be three. The port number for the

 port will be 'PortNumber'.

 3) The Resistance for the port

 4) The Reactance for the port

 5) The Inductance for the port

 6) The capacitance for the port

 7) A character string which identifies a

 reference plane for the autogrounded port.

 this value is FIX for a reference

 plane and NONE for a calibration length.

 8) A floating point number which provides the

 length of the reference plane when the type

 is FIX and provides the calibration length

 when the type is NONE.

 9) The Port Number(Optional)

 Note: This method is only for geometry projects.

 Example usage:

 % Add an autogrounded port

 Port=Project.addPortAutoGrounded(11,1,50,0,0,0,'FIX',10);

 See also SonnetProject/addPort, SonnetProject/addPortToPolygon,

 SonnetProject/addPortCocalibrated, SonnetProject/addPortAtLocation,

 SonnetProject/addPortStandard

 addPortCocalibrated Add a port to the project

 Port=Project.addPortCocalibrated(...) will add a standard port

 to the array of ports. A reference to the new port is returned.

 It requires the following arguments:

 1) The Polygon to which the port is attached (or its debugID)

 2) The Name of the group to which it belongs

 2) The Vertex to which the polygon is attached. The vertex number

 should be the index for the first vertex number that

 defines the polygon edge; if the user would like to

 attach a port between the third and fourth (X,Y)

 coordinate points for a polygon then the vertex

 number should be three. The port number for the

 port will be 'PortNumber'.

 4) The Resistance for the port

 5) The Reactance for the port

 6) The Inductance for the port

 7) The capacitance for the port

 8) The Port Number (Optional)

 Note: This method is only for geometry projects.

 Example usage:

 % Add an co-calibrated port

 Port=Project.addPortCocalibrated(11,'A',1,75,0,0,0);

 See also SonnetProject/addPort, SonnetProject/addPortToPolygon,

 SonnetProject/addPortAutoGrounded, SonnetProject/addPortAtLocation,

 SonnetProject/addPortStandard

 addPortStandard Add a port to the project

 Port=Project.addPortStandard(Polygon,Vertex,Resistance,Reactance,

Method Reference

Version 4.0

 Inductance,Capacitance) will add a standard port to the

 array of ports. The vertex number should be the index for

 the first vertex number that defines the polygon edge;

 if the user would like to attach a port between the

 third and fourth (X,Y) coordinate points for a polygon

 then the vertex number should be three. A reference to the

 new port is returned.

 Port=Project.addPortStandard(Polygon,Vertex,Resistance,Reactance,

 Inductance,Capacitance,PortNumber) will add a standard port to the

 array of ports. The vertex number should be the index for

 the first vertex number that defines the polygon edge;

 if the user would like to attach a port between the

 third and fourth (X,Y) coordinate points for a polygon

 then the vertex number should be three. The port number

 for the port will be 'PortNumber'. A reference to the new

 port is returned.

 Note: This method is only for geometry projects.

 Example usage:

 % Add a standard port

 Port=Project.addPortStandard(11,1,75,0,0,0);

 See also SonnetProject/addPort, SonnetProject/addPortToPolygon,

 SonnetProject/addPortCocalibrated, SonnetProject/addPortAtLocation,

 SonnetProject/addPortAutoGrounded

 addPortToPolygon Add a port to the project

 Port=Project.addPortToPolygon(Polygon, Vertex) will add a

 standard port to the specified vertex of the passed

 polygon. The vertex number should be the index for

 the first vertex number that defines the polygon edge;

 if the user would like to attach a port between the

 third and fourth (X,Y) coordinate points for a polygon

 then the vertex number should be three. A reference to

 the new port is returned.

 Note: This method is only for geometry projects.

 Example usage:

 % In this example we will add a port to

 % a particular polygon in the project.

 % The X and Y coordinates of the sixth

 % polygon in the project are as follows:

 %

 % Project.getPolygon(6).XCoordinateValues

 % ans =

 % [34] [227] [227] [34] [34]

 %

 % Project.getPolygon(6).YCoordinateValues

 % ans =

 % [105] [105] [75] [75] [105]

 %

 % Add we want to add a port on the edge between (227,105)

 % and (227,75). Because (227,105) is the second coordinate

 % pair the vertex number should be two. The polygon

 % in this case is the sixth polygon in the project; we can

 % get a reference to the sixth polygon in the project

 % with the command Project.getPolygon(6).

 PortReference=Project.addPort(6,2);

Method Reference

Version 4.0

 See also SonnetProject/addPort, SonnetProject/addPortAtLocation,

 SonnetProject/addPortCocalibrated, SonnetProject/addPortStandard,

 SonnetProject/addPortAutoGrounded

 addProjectFileElement Creates a project file element

 Project.addProjectFileElement(File,PortNodes,SweepFromSubproject)

 Will add an project file to the circuit connected to the ports

 specified by PortNodes. SweepFromSubproject should be either 0 or 1.

 0 to indicate that you use the sweep from this project or 1 to

 indicate that you use the sweep from the subproject.

 Project.addProjectFileElement(File,PortNodes,SweepFromSubproject,Network)

 Will add an project file to the circuit connected to the ports

 specified by PortNodes. SweepFromSubproject should be either 0 or 1.

 0 to indicate that you use the sweep from this project or 1 to

 indicate that you use the sweep from the subproject. The network

 selection may be the network's index or the network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a project file element to the first network of the project

 Project.addProjectFileElement('projectFile.son',[1,2],0);

 % Add a project file element to the second network of the project

 Project.addProjectFileElement('projectFile.son',[1,2],0,2);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addNetworkElement

 addReferencePlane Adds a reference plane to the project

 Project.addReferencePlane(...) will add another reference plane

 to the array of reference planes.

 addReferencePlane requires these arguments:

 1) The Side - the side the plane is on ('LEFT', 'RIGHT', 'Top', 'BOTTOM')

 2) The Type - type of reference plane (FIX, LINK, NONE)

 3) The length - length of the reference plane (If type is FIX or NONE)

 or

 3) The polygon - the polygon to which the reference plane is linked

 either the polygon object or the polygon's ID.

 4) If it is a polygon the vertex to which the reference

 plane will be connected to will need to be specified

 Note: This method is only for geometry projects.

 Example usage:

 % Add a reference plane to the 'TOP' side

 % of type 'FIX' of length 12.

 Project.addReferencePlane('TOP','FIX',12);

 % Add a reference plane to the 'BOTTOM' side

Method Reference

Version 4.0

 % of type 'NONE' of length 10.

 Project.addReferencePlane('BOTTOM','NONE',10);

 % Add a reference plane to the 'RIGHT' side

 % of type 'LINK' with vertex 1 of a particular polygon.

 Project.addReferencePlane('RIGHT','LINK',aPolygonObject,1);

 % Add a reference plane to the 'RIGHT' side

 % of type 'LINK' at the 2nd vertex of the polygon

 % with an ID of 1.

 Project.addReferencePlane('RIGHT','LINK',1,2);

 addResistorComponent Add a resistor component

 aComponent=Project.addResistorComponent(...) adds an ideal resistor

 component to a geometry project. A reference to the newly added

 component is returned which can be used to modify the component's

 settings.

 addResistorComponent takes the following arguments:

 1) The component name (Ex: 'R1')

 2) The resistor value (Ex: 50)

 3) Level number

 4) A 2x2 matrix of the component port locations.

 The first row should be the first port's X value, then its Y value

 The second row should be the second port's X value, then its Y value

 5) (Optional) The terminal width

 This value should be either

 - "Feed" to use the feedline width (Default)

 - "Cell" for one cell width

 - A number which represents a custom width

 Note: This method is only for geometry projects.

 Note: This method will add components to a project.

 To modify the value of a component use the

 modifyComponentValue method.

 Example usage:

 Project.addResistorComponent('R1',50,0,[104.5 156; 104.5 189])

 Project.addResistorComponent('R2',50,0,[104.5 156; 104.5 189],5)

 Project.addResistorComponent('R3',50,0,[104.5 156; 104.5 189],'Feed')

 Project.addResistorComponent('R4',50,0,[104.5 156; 104.5 189],'1Cell')

 addResistorElement Creates a resistor element

 Project.addResistorElement(Node1,Node2,Resistance) will add

 an resistor element to the circuit between Node1 and Node2 with

 the specified resistance. If the second node of the resistor

 should not be attached to any node then Node2 should be [].

 Project.addResistorElement(Node1,Node2,Resistance,Network) will add

 an resistor element to the specified network of the circuit between

 Node1 and Node2 with the specified resistance. If the second node

 of the resistor should not be attached to any node then Node2 should

 be []. The network selection may be the network's index or the

 network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a resistor element to the first network

Method Reference

Version 4.0

 % in the project. The resistor is connected

 % from node 1 to 2 with resistance of 50

 Project.addResistorElement(1,2,50);

 % Add a resistor element to the second network

 % in the project. The resistor is connected

 % from node 1 to 2 with resistance of 50

 Project.addResistorElement(1,2,50,2);

 See also SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addTransmissionLineElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement,

 SonnetProject/addNetworkElement

 addSimpleFrequencySweep Adds an 'SIMPLE' type of sweep to the project

 Project.addSimpleFrequencySweep(StartFrequency,EndFrequency,StepValue) adds

 a 'SIMPLE' type of frequency sweep to the project.

 This function will change the selected frequency sweep to 'SIMPLE'.

 Example usage:

 % Add an 'SIMPLE' type of sweep to the project.

 % the sweep will go from 5 to 10 with steps of 1.

 Project.addSimpleFrequencySweep(5,10,1);

 See also SonnetProject/addFrequencySweep

 addStepFrequencySweep Adds an 'STEP' type of sweep to the project

 Project.addStepFrequencySweep(Frequency) adds a 'STEP' type of

 frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add an 'STEP' type of sweep to the project.

 % the sweep simulate at frequency 5

 Project.addStepFrequencySweep(5);

 See also SonnetProject/addFrequencySweep

 addSweepFrequencySweep Adds a 'Sweep' type of sweep to the project

 Project.addSweepFrequencySweep(StartFrequency,EndFrequency,StepFrequency)

 adds a 'SWEEP' type of frequency sweep to the project.

 This sweep is part of a combination frequency sweep.

 This function will change the selected frequency sweep

 to frequency sweep combination.

 Example usage:

 % Add a 'Sweep' type of sweep to the project.

Method Reference

Version 4.0

 % the sweep will go from 5 to 10 in steps of 1.

 Project.addSweepFrequencySweep(5,10,1);

 See also SonnetProject/addFrequencySweep

 addSymmetricDimensionParameter Adds a dimension parameter

 Project.addSymmetricDimensionParameter(...) will add a symmetric

 geometry dimension parameter to the project.

 addSymmetricDimensionParameter ten arguments:

 1) The parameter name (Ex: 'Width')

 2) Handle for first reference polygon or the polygon's ID

 3) The vertex number used for the first reference polygon

 4) Handle for second reference polygon or the polygon's ID

 5) The vertex number used for the second reference polygon

 6) A cell array of any polygons that have points that should

 be included in the first point set. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array. Polygons in the

 first point set are the ones to be altered in the

 same way as the first reference point.

 7) A cell array of vectors that indicate which polygon

 vertices should be in the first point set. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array.

 8) A cell array of any polygons that have points that should

 be included in the second point set. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array. Polygons in the

 second point set are the ones to be altered in the

 same way as the first reference point.

 9) A cell array of vectors that indicate which polygon

 vertices should be in the first point set. If there is

 only one polygon to be altered then this parameter

 does not need to be a cell array.

 10) The direction of movement; this may be 'x', 'X', or 'XDir'

 for the X direction and 'y', 'Y', or 'YDir' for the Y

 direction.

 11) (Optional) The equation that should be used.

 Note: This method is only for geometry projects.

 Note: This method will add dimension parameters to a project.

 To modify the value of a dimension parameter use the

 modifyVariableValue method.

 Example usage:

 Example 1:

 % We have a polygon in a project and we want to alter its

 % width with a dimension parameter. This particular polygon

 % has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The polygon has an ID of seven. The polygon

 % looks like the following diagram with the vertices numbered.

 % We want the polygon to grow/shrink on both the left and right

 % hand sides.

 %

 % 4-----3

 % | |

 % | |

 % | |

 % 1-----2

 %

Method Reference

Version 4.0

 % To accomplish our goal we can add a symmetric dimension parameter

 % to the project. The parameter will be named 'Width' and

 % be attached to the polygon with an ID of seven. The first

 % reference vertex will be the first vertex of the desired

 % polygon and the second vertex value will be the second

 % vertex of the polygon. The two reference points signify

 % a move in the X direction.

 %

 % Now we will add some polygons that have altering points

 % to the point set. In this case we want the left two coordinates

 % to move together (coordinates 1 and 4) and the right two

 % coordinates to move together (coordinates 2 and 3). Each set

 % of points that will move together is a point set. One of the

 % point sets should be [1 4] and the other [2 3]. Alternatively

 % the point sets may just be [4] and [3] because points 1 and 2 are

 % already going to be moved because they are the reference points.

 Project.addSymmetricDimensionParameter('Width',7,1,7,2,7,[1 4],7,[2 3],'x');

 % Alternately, the polygon's coordinates could have been selected

 % easier with the polygon methods lowerRightVertex(), lowerLeftVertex(),

 % upperRightVertex(), upperLeftVertex(). These methods will return

 % the index of the coordinate that is at the desired location of

 % the polygon. The polygon coordinate methods are intended for

 % rectangular polygons only. Using the polygon coordinate access

 % methods on non-rectangular polygons could potential yield

 % undesirable results (Example: what is the lower left corner

 % of a spiral? lowerLeftVertex() will return the best value it

 % can but the user should be aware that in that case they may

 % be better off specifying the coordinate manually). In order

 % to use methods such as lowerRightVertex() we will need to

 % obtain a reference to the desired polygon; this can be

 % accomplished using the findPolygonUsingId() method.

 [~, polygon]=Project.findPolygonUsingId(7);

 Project.addSymmetricDimensionParameter('Width',...

 polygon,polygon.lowerLeftVertex(),...

 polygon,polygon.lowerRightVertex(),...

 polygon,polygon.upperLeftVertex(),...

 polygon,polygon.upperRightVertex(),'x');

 Example 2:

 % We have two polygons in a project and we want to alter

 % their separation with a dimension parameter. The left

 % polygon has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The right polygon has coordinate values

 % of (50,10),(80,10),(80,30),(70,30),(70,40),(50,40). The left polygon

 % has an ID of seven and the right polygon has an ID of eight.

 % The polygon layout looks like the following diagram with the vertices

 % numbered. We want to alter the separation between the polygons such

 % that they are closer together / farther apart.

 %

 % 4-----3 6-----5

 % | | | |__3

 % | | | 4 |

 % | | | |

 % 1-----2 1--------2

 %

 % To accomplish our goal we will add a dimension parameter. We

 % will call our parameter 'Sep'. The first reference point will

 % be attached to vertex number two of the left polygon (ID of seven)

 % and the second reference point will be attached to vertex

 % number one of the right polygon (ID of eight).

 %

Method Reference

Version 4.0

 % In this example we want to alter all the points for the left

 % polygon separately and all the points in the right polygon

 % separately. This can be done by making then be in different

 % point sets. We may indicate that all the points in a polygon

 % should be altered by passing [] for the vertex vector.

 Project.addSymmetricDimensionParameter('Sep',7,2,8,1,7,[],8,[],'x');

 Example 3:

 % We have three polygons in a project and we want to alter the seperation

 % between the right two polygons and the left most polygon. The left

 % polygon has coordinate values of: (10,10),(30,10),(30,40),

 % (10,40),(10,10). The middle polygon has coordinate values

 % of (50,10),(80,10),(80,30),(70,30),(70,40),(50,40). The polygon on

 % the right has coordinate values of (90,10),(120,10),(120,30),(110,30),

 % (110,40),(90,40). The left polygon has an ID of seven, the middle

 % polygon has an ID of eight and the right polygon has an ID of nine.

 % The polygon layout looks like the following diagram with the vertices

 % numbered. We want the middle and right polygons to move closer or farther

 % away from the fixed left polygon.

 %

 % 4-----3 6-----5 6-----5

 % | | | |__3 | |__3

 % | | | 4 | | 4 |

 % | | | | | |

 % 1-----2 1--------2 1--------2

 % |<--Sep-->|

 %

 % To accomplish our goal we will add a dimension parameter. We

 % will call our parameter 'Sep'. The first reference point will

 % be attached to vertex number two of the left polygon (ID of seven)

 % and the second reference point will be attached to vertex

 % number one of the middle polygon (ID of eight).

 %

 % Now we will add some polygons that have altering points

 % to the point sets. In this case we want the left polygon to

 % move independently and the right two polygons to move

 % together. So the left most polygon should be used for the

 % first point set and the right two polygons used for the

 % second point set. Because the second point set contains more

 % than one polygon the polygons and vertices must be specified

 % as cell arrays. Because the entire polygons should be moved the

 % vertices may be specified by the empty set ([]); in this example

 % we will explicitly state the vertices anyway so that the user can

 % see how to indicate individual vertices.

 aPointSet1Polygons=7;

 aPointSet1Points=[1 2 3 4];

 aPointSet2Polygons{1}=8;

 aPointSet2Polygons{2}=9;

 aPointSet2Points{1}=[1 2 3 4 5 6];

 aPointSet2Points{2}=[1 2 3 4 5 6];

Project.addAnchoredDimensionParameter('Sep',7,2,8,1,aPointSet1Polygons,aPointSet1Points,

aPointSet2Polygons,aPointSet2Points,'x');

 addTouchstoneOutput Find a port given an approximate location

 Project.addTouchstoneOutput() will add a touchstone

 file output to the project. The output file will have

 the same base filename as the project but will have the

 extension ".s#p" where # is the number of ports currently

 in the project.

Method Reference

Version 4.0

 Note: This method is the equivalent of the following command

 Project.addFileOutput('TS','D','Y','$BASENAME.s#p','IC','N','S','MA','R',50);

 where # is the number of ports in the project.

 See also SonnetProject/findPortUsingPoint

 addTransmissionLineElement Creates a transmission line element

 Project.addTransmissionLineElement(...) will add an transmission line to the circuit

 Project.addTransmissionLineElement(Node1,Node2,Impedance,Length,Frequency)

 will add a transmission line element to the circuit between Node1

 and Node2 with the specified impedance, length and frequency of operation.

 If the second node of the capacitor should not be attached to any node

 then Node2 should be [].

 Project.addTransmissionLineElement(Node1,Node2,Impedance,Length,Frequency,Network)

 will add a transmission line element to the circuit between Node1

 and Node2 with the specified impedance, length and frequency of operation.

 If the second node of the capacitor should not be attached to any node

 then Node2 should be []. The network selection may be the network's index

 or the network's name.

 Note: This method is only for netlist projects.

 Example usage:

 % Add a transmission line element to

 % the first network of the project

 % connected from node 1 to 2 with

 % an impedance of 100, an electrical

 % length of 1000 and a frequency of 10.

 Project.addTransmissionLineElement(1,2,100,1000,10);

 % Add a transmission line element to

 % the second network of the project

 % connected from node 1 to 2 with

 % an impedance of 100, an electrical

 % length of 1000 and a frequency of 10.

 Project.addTransmissionLineElement(1,2,100,1000,10,2);

 See also SonnetProject/addResistorElement,

 SonnetProject/addInductorElement,

 SonnetProject/addCapacitorElement,

 SonnetProject/addPhysicalTransmissionLineElement,

 SonnetProject/addDataResponseFileElement,

 SonnetProject/addProjectFileElement,

 SonnetProject/addNetworkElement

 addVariableSweepSimple Add a variable sweep

 Project.addVariableSweepEntry(...) will add a variable sweep to the

 array of sweep entries. Input arguments are:

 1) Sweep Type

 2) Parameter Name -- The name of the parameter to sweep

 3) Min Value -- Starting value of the sweep

 4) Max Value -- Ending value of the sweep

 5) Number of Points -- Number of points on the sweep

 6) Frequency Sweep Handle (Optional) -- Handle to the

 frequency sweep of the Sonnet project. If unspecified,

 the first frequency sweep will be selected.

Method Reference

Version 4.0

 Note: This method currently only supports sweeps of one parameter.

 The suplpied Sweep type must be one of the following:

 ABS_ENTRY - Adaptive Band Synthesis Sweep

 ABS_FMAX - Find the maximum frequency response.

 ABS_FMIN - Find the minimum frequency response.

 DC_FREQ - Analyze at a DC frequency point.

 STEP - Discrete analysis frequency

 SWEEP - Linear frequency sweep with stated interval.

 ESWEEP - Exponential frequency sweep.

 LSWEEP - Linear frequency sweep with number of points.

 Example usage:

 % Add an ABS sweep of variable 'VAR' with a minimum

 % of 5 max of 10 simulating 15 points. The function

 % will use the first frequency sweep in the project.

 Project.addVariableSweepSimple('ABS_ENTRY','var1',5,10,15)

 % Add an ABS sweep of variable 'VAR' with a minimum

 % of 5 max of 10 simulating 15 points. The function

 % will use the second frequency sweep in the project.

 aSweep=Project.FrequencyBlock.SweepsArray{2};

 Project.addVariableSweepSimple('ABS_ENTRY','var1',5,50,15,aSweep)

 addViaPolygon Add a via polygon to the polygon array

 Project.addViaPolygon(...) will add a Via Polygon

 to the array of Polygons.

 addViaPolygon requires these arguments:

 1) The level the VIA attaches to.

 2) metallization Level Index (The level the polygon is on)

 3) The type of metal used for the polygon. This may either

 be a the index for the metal type in the array of

 metal types, or the name of the metal type

 (Ex: 'Copper'). Lossless metal is not in the array

 of metals but can be selected by either passing 0

 or 'Lossless'.

 4) A string to identify the fill type used for the polygon.

 N indicates staircase fill, T indicates diagonal

 fill and V indicates conformal mesh. Note that filltype

 only applies to metal

 polygons; this field is ignored for dielectric brick polygons

 5) Minimum subsection size in X direction

 6) Minimum subsection size in Y direction

 7) Maximum subsection size in X direction

 8) Maximum subsection size in Y direction

 9) The Maximum Length For The Conformal Mesh Subsection

 10) Edge mesh setting. Y indicates edge meshing is on for this

 polygon. N indicates edge meshing is off.

 11) A matrix for the X coordinate values.

 12) A matrix for the Y coordinate values

 Note: Many users will prefer to use the 'addViaPolygonEasy' method.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % via at level 0, attached to 'GND', metal type -1 (lossless),

 % staircase fill, X subsection size from 0 to 50,

Method Reference

Version 4.0

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addViaPolygon('GND',0,0,'N',0,0,50,100,0,'Y',x,y);

 % via at level 0, attached to 'GND', metal type 'Copper',

 % staircase fill, X subsection size from 0 to 50,

 % Y subsection size from 0 to 100.

 x=[5,10,10,5,5];

 y=[10,10,20,20,10];

 Project.addViaPolygon('GND',0,'Copper','N',0,0,50,100,0,'Y',x,y);

 See also SonnetProject/addViaPolygonEasy

 addViaPolygonEasy Add a via polygon to the polygon array

 Polygon=Project.addViaPolygonEasy(...) will add an via polygon

 to the array of polygons. A reference to the polygon

 is returned.

 addViaPolygonEasy requires these arguments:

 1) metallization Level Index (The level the polygon is on)

 2) The level the via is connected to

 3) A matrix for the X coordinate values

 4) A matrix for the Y coordinate values

 5) (Optional) The type of metal used for the polygon.

 This may either be a the index for the metal

 type in the array of metal types, or the name

 of the metal type (Ex: 'Copper'). If this value

 is not specified then lossless metal will be used.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % Lossless via at level 0, attached to 'GND'

 Project.addViaPolygonEasy(0,'GND',[5,10,10,5,5],[10,10,20,20,10]);

 % Copper via at level 0, attached to 'GND' (Copper

 metal must type must be defined for the project)

 Project.addViaPolygonEasy(0,'GND',[5,10,10,5,5],[10,10,20,20,10],'Copper');

 See also SonnetProject/addViaPolygon

 assignAllPolygonssequentialIds Makes sure polygons have unique IDs

 Project.assignAllPolygonssequentialIds() will make sure all the

 polygons in a project have unique debugIds by making their

 debugIds be their index in the array of polygons. The

 debugIds of all the polygons in the project may be changed.

 Note: This method is only for geometry projects.

 See also SonnetProject/assignUniqueDebugId,

 SonnetProject/generateUniqueId

 assignUniqueDebugId Assign a polygon an unique debugId.

 Project.assignUniqueDebugId(aPolygon) will assign the

Method Reference

Version 4.0

 passed polygon a unique debugId. The passed polygon

 does not necessarily need to be from same project.

 Note: This method is only for geometry projects.

 See also SonnetProject/assignAllPolygonsSequentialIds,

 SonnetProject/generateUniqueId

 changeAngleUnit Change project's angle unit

 Project.changeAngleUnit(string) modifies the angle unit

 selected for the project. The passed angle unit should

 be a unit that is supported by Sonnet.

 (At the moment the only supported unit is DEG)

 changeAngleUnit(unitString) Changes the selected angle unit

 to the passed unit identifier

 Example usage:

 % Change the angle unit to 'DEG'

 Project.changeAngleUnit('DEG');

 changeBoxSize Changes the size of the box

 Project.changeBoxSize(XSize,YSize) changes the

 size of the Sonnet box. The Sonnet box encompasses

 the circuit area. The new box width will be

 XSize and the new box height will be YSize.

 Note: This function is the same as changeBoxSizeXY

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSizeXY SonnetProject/changeBoxSizeX

 SonnetProject/changeBoxSizeY SonnetProject/changeNumberOfCells

 SonnetProject/changeNumberOfCellsXY SonnetProject/changeNumberOfCellsX

 SonnetProject/changeNumberOfCellsY

 changeBoxSizeX Changes the size of the box

 Project.changeBoxSizeX(XSize) changes the size of the Sonnet box

 in the X direction only. The Sonnet box encompasses

 the circuit area. The new box width will be XSize.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeY, SonnetProject/changeNumberOfCells,

 SonnetProject/changeNumberOfCellsXY, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeBoxSizeXY Changes the size of the box

 Project.changeBoxSizeXY(XSize,YSize) changes the size of the Sonnet box.

 The Sonnet box encompasses the circuit area. The new box width will be

 XSize and the new box height will be YSize.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeBoxSize

Method Reference

Version 4.0

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeX,

 SonnetProject/changeBoxSizeY, SonnetProject/changeNumberOfCells,

 SonnetProject/changeNumberOfCellsXY, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeBoxSizeY Changes the size of the box

 Project.changeBoxSizeY(YSize) changes the size of the Sonnet box

 in the Y direction only. The Sonnet box encompasses

 the circuit area. The new box height will be YSize.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeNumberOfCells,

 SonnetProject/changeNumberOfCellsXY, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCapacitanceUnit Change project's capacitance unit

 Project.changeCapacitanceUnit(string) modifies the capacitance unit

 selected for the project. The passed capacitance unit should

 be a unit that is supported by Sonnet.

 changeCapacitanceUnit(unitString) Changes the selected capacitance

 unit to the passed unit identifier

 Example usage:

 % Change the resistance unit to 'nF'

 Project.changeCapacitanceUnit('nF');

 changeCellSizeUsingBoxSize Changes the cell size

 Project.changeCellSizeUsingBoxSize(XCellSize,YCellSize) changes

 the cell size used for a project. The size of the box in each

 direction will be modified to realize the given

 cell size.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeCellSizeUsingBoxSizeXY

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingBoxSizeX Changes the cell size

 Project.changeCellSizeUsingBoxSizeX(XCellSize) changes the cell size

 used for a project. The box size in the X direction

 will be modified to realize the given cell size.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

Method Reference

Version 4.0

 changeCellSizeUsingBoxSizeXY Changes the cell size

 Project.changeCellSizeUsingBoxSizeXY(XCellSize,YCellSize) changes the cell size

 used for a project. The size of the box in each

 direction will be modified to realize the given

 cell size.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeCellSizeUsingBoxSize

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingBoxSizeY Changes the cell size

 Project.changeCellSizeUsingBoxSizeY(YCellSize) changes the cell size

 used for a project. The box size in the Y direction

 will be modified to realize the given cell size.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingNumberOfCells Changes the cell size

 Project.changeCellSizeUsingNumberOfCells(XCellSize,YCellSize) changes the

 cell size used for a project. The number of cells in each direction

 will be modified to realize the given cell size.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeCellSizeUsingNumberOfCellsXY.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingNumberOfCellsX Changes the cell size

 Project.changeCellSizeUsingNumberOfCellsX(XCellSize) changes

 the cell size used for a project. The number of cells in the X direction

 will be modified to realize the given cell size.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingNumberOfCellsXY Changes the cell size

 Project.changeCellSizeUsingNumberOfCellsXY(XCellSize,YCellSize) changes

 the cell size used for a project. The number of cells in each direction

 will be modified to realize the given cell size.

Method Reference

Version 4.0

 Note: This method is only for geometry projects.

 Note: This function is the same as changeCellSizeUsingNumberOfCells

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeCellSizeUsingNumberOfCellsY Changes the cell size

 Project.changeCellSizeUsingNumberOfCellsY(YCellSize) changes the cell size

 used for a project. The number of cells in the Y direction

 will be modified to realize the given cell size.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeConductivityUnit Change project's conductivity unit

 Project.changeConductivityUnit(string) modifies the conductivity unit

 selected for the project. The passed conductivity unit should

 be a unit that is supported by Sonnet.

 changeConductivityUnit(unitString) Changes the selected conductivity

 unit to the passed unit identifier

 changeDielectricLayerThickness Changes layer thickness

 Project.changeDielectricLayerThickness(N,Thickness) will change

 the thickness of the Nth dielectric layer.

 Project.changeDielectricLayerThickness(Name,Thickness) will change

 the thickness of the dielectric layer with the specified name.

 If none of the layers in the project have the specified name

 then an error will be thrown.

 Note: This method is only for geometry projects.

 Example usage:

 % Change the thickness of the first layer

 % to be 50 units thick.

 Project.changeDielectricLayerThickness(1,50)

 changeFrequencyUnit Change project's frequency unit

 Project.changeFrequencyUnit(string) modifies the frequency unit

 selected for the project. The passed frequency unit should

 be a unit that is supported by Sonnet. (HZ, KHZ, MHZ, GHZ, THZ, PHZ)

 changeFrequencyUnit(unitString) Changes the selected frequency unit

 to the passed unit identifier

 Example usage:

Method Reference

Version 4.0

 % Change the frequency unit to 'HZ'

 Project.changeFrequencyUnit('HZ');

 changeInductanceUnit Change project's inductance unit

 Project.changeInductanceUnit(string) modifies the inductance unit

 selected for the project. The passed inductance unit should

 be a unit that is supported by Sonnet. (H, MH, UH, NH, PH, FH)

 changeInductanceUnit(unitString) Changes the selected inductance unit

 to the passed unit identifier

 Example usage:

 % Change the inductance unit to 'H'

 Project.changeInductanceUnit('H');

 changeLengthUnit Change project's length unit

 Project.changeLengthUnit(string) modifies the length unit

 selected for the project. The passed length unit should

 be a unit that is supported by Sonnet. (MIL, UM, MM, CM, IN, M)

 changeLengthUnit(unitString) Changes the selected length unit

 to the passed unit identifier

 Example usage:

 % Change the length unit to 'MIL'

 Project.changeLengthUnit('MIL');

 changeNumberOfCells Changes the number of cells

 Project.changeNumberOfCells(XCells,YCells) changes the number of cells

 that make up the grid. This function changes the

 number of cells in the X direction to be XCells

 and the number of cells in the Y direction to be YCells.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeNumberOfCellsXY

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCellsXY, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeNumberOfCellsX Changes the number of cells

 Project.changeNumberOfCellsX(XCells) changes the number of cells

 that make up the grid. This function modifies the

 number of cells in the X direction to be XCells.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsXY,

 SonnetProject/changeNumberOfCellsY

Method Reference

Version 4.0

 changeNumberOfCellsXY Changes the number of cells

 Project.changeNumberOfCellsXY(XCells,YCells) changes the number of cells

 that make up the grid. This function changes the

 number of cells in the X direction to be XCells

 and the number of cells in the Y direction to be YCells.

 Note: This method is only for geometry projects.

 Note: This function is the same as changeNumberOfCells

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsX,

 SonnetProject/changeNumberOfCellsY

 changeNumberOfCellsY Changes the number of cells

 Project.changeNumberOfCellsY(YCells) changes the number of cells

 that make up the grid. This function modifies the

 number of cells in the Y direction to be YCells.

 Note: This method is only for geometry projects.

 See also SonnetProject/changeBoxSize, SonnetProject/changeBoxSizeXY,

 SonnetProject/changeBoxSizeX, SonnetProject/changeBoxSizeY,

 SonnetProject/changeNumberOfCells, SonnetProject/changeNumberOfCellsXY,

 SonnetProject/changeNumberOfCellsX

 changePolygonType Change the composition of a polygon

 Project.changePolygonType(ID,Type) will try to change the

 composition of the polygon with the debugID of ID to the

 passed type. If the polygon is a metal or via polygon then

 Type must be the name of a metal type in the project. If

 the polygon is a dielectric brick then Type must be the

 name of one of the brick types in the project.

 Project.changePolygonType(Polygon,Type) will try to change the

 composition of the passed polygon to the passed type.

 If the polygon is a metal or via polygon then Type

 must be the name of a metal type in the project. If

 the polygon is a dielectric brick then Type must be the

 name of one of the brick types in the project.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % Change the polygon with debug ID 12 to 'ThinCopper'

 % (A metal type called 'ThinCopper' must already be

 % defined in the project).

 Project.changePolygonType(12,'ThinCopper');

 % Change the polygon with debug ID 12 to 'Lossless'

 % (Lossless is the default type for metal polygons).

 Project.changePolygonType(12,'Lossless');

 See also SonnetProject/changePolygonTypeUsingId,

 SonnetProject/changePolygonTypeUsingIndex

Method Reference

Version 4.0

 changePolygonTypeUsingId Change the composition of a polygon

 Project.changePolygonType(ID,Type) will try to change the

 composition of the polygon with the debugID of ID to the

 passed type. If the polygon is a metal or via polygon then

 Type must be the name of a metal type in the project. If

 the polygon is a dielectric brick then Type must be the

 name of one of the brick types in the project.

 Project.changePolygonTypeUsingId(Polygon,Type) will try

 to change the composition of the passed polygon to the

 passed type. If the polygon is a metal or via polygon

 then Type must be the name of a metal type in the

 project. If the polygon is a dielectric brick then

 Type must be the name of one of the brick types

 in the project.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % Change the polygon with debug ID 12 to 'ThinCopper'

 % (A metal type called 'ThinCopper' must already be

 % defined in the project).

 Project.changePolygonTypeUsingId(12,'ThinCopper');

 % Change the polygon with debug ID 12 to 'Lossless'

 % (Lossless is the default type for metal polygons).

 Project.changePolygonTypeUsingId(12,'Lossless');

 See also SonnetProject/changePolygonType,

 SonnetProject/changePolygonTypeUsingId

 changePolygonTypeUsingIndex Change the composition of a polygon

 Project.changePolygonType(N,Type) will try to change the

 composition of the Nth polygon in the array of polygons to the

 passed type. If the polygon is a metal or via polygon then

 Type must be the name of a metal type in the project. If

 the polygon is a dielectric brick then Type must be the

 name of one of the brick types in the project.

 Project.changePolygonTypeUsingIndex(Polygon,Type) will try

 to change the composition of the passed polygon to the

 passed type. If the polygon is a metal or via polygon

 then Type must be the name of a metal type in the

 project. If the polygon is a dielectric brick then

 Type must be the name of one of the brick types

 in the project.

 Note: This method is only for geometry projects.

 Note: Sonnet version 12 projects have a shared metal type for planar

 and via polygons. Sonnet version 13 projects have seperate

 metal types for planar polygons and via polygons.

 Example usage:

 % Change first polygon in the array of polygons to

Method Reference

Version 4.0

 % 'ThinCopper' (A metal type called 'ThinCopper'

 % must already be defined in the project).

 Project.changePolygonTypeUsingIndex(1,'ThinCopper');

 % Change first polygon in the array of polygons to

 % 'Lossless' (Lossless is the default type for

 % metal polygons).

 Project.changePolygonTypeUsingIndex(1,'Lossless');

 See also SonnetProject/changePolygonType,

 SonnetProject/changePolygonTypeUsingIndex

 changeResistanceUnit Change project's resistance unit

 Project.changeResistanceUnit(string) modifies the resistance unit

 selected for the project. The passed resistance unit should

 be a unit that is supported by Sonnet. (OH, KOH, MOH)

 changeResistanceUnit(unitString) Changes the selected resistance

 unit to the passed unit identifier

 Example usage:

 % Change the resistance unit to 'OH'

 Project.changeResistanceUnit('OH');

 changeSelectedFrequencySweep Change project's selected frequency sweep

 Project.changeSelectedFrequencySweep(string) modifies the selected frequency

 sweep for the project. The selected frequency sweep is the one that is

 performed for simulations. The selected frequency sweep should be a sweep

 that is recognized by Sonnet (ABS, SIMPLE, STD).

 Example usage:

 % Change the selected frequency sweep to adaptive band

 Project.changeSelectedFrequencySweep('ABS');

 % Change the selected frequency sweep to frequency combination

 Project.changeSelectedFrequencySweep('STD');

 cleanOutputFiles Deletes output files for a project

 Project.cleanOutputFiles() deletes any output response files present

 in the directory for a Sonnet project. cleanOutputFiles knows

 which files to delete by checking the fileoutBlock for the

 project to see if any output files are defined. If there are

 output files to be deleted then cleanOutputFiles will look

 for those files in the simulation directory and delete them if present.

 See also SonnetProject/cleanProject

 cleanProject Cleans a project

 Project.cleanProject() deletes the simulation data for the project.

 See also SonnetProject/cleanOutputFiles

Method Reference

Version 4.0

 clone Initializes a replica project

 newProject=Project.clone() will return a deep copy of a

 Sonnet project. The copy will have all the same values for

 the class properties but will contain completely separate

 handles.

 The new project will have no filename associated

 with it but it may be saved with the saveAs()

 command.

 Example usage:

 % Create a new Sonnet project object

 Project1=SonnetProject('project.son');

 % Clone the project

 Project2=Project1.clone();

 % Any modifications made to Project1

 % or Project2 will not affect the

 % other project.

 See also SonnetProject/quickClone

 copyDielectricLayer Copies a dielectric layer

 Project.copyDielectricLayer(N) makes a copy of the

 Nth dielectric layer and places it on the bottom

 of the stackup.

 Note: This method is only for geometry projects.

 copyMetalPolygon Makes a copy of a metal polygon

 newPolygonIndex=Project.copyMetalPolygon(index) makes a

 carbon copy of a metal polygon specified by an index

 in the array of polygons. The new polygon's index will

 be returned.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingId,

 SonnetProject/copyPolygonUsingIndex

 copyPolygon Makes a copy of a polygon and adds it to the project

 Polygon=Project.copyPolygon(ID) Returns a copy of the polygon with the

 passed ID value. The new polygon will have a unique ID.

 Polygon=Project.copyPolygon(Polygon) Returns a copy of the passed

 polygon. The new polygon will have a unique ID.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygonUsingId,

 SonnetProject/copyPolygonUsingIndex,

 SonnetProject/duplicatePolygon,

 SonnetProject/duplicatePolygonUsingId,

 SonnetProject/duplicatePolygonUsingIndex,

Method Reference

Version 4.0

 copyPolygonUsingId Makes a copy of a polygon and adds it to the project

 Polygon=Project.copyPolygonUsingId(ID) Makes a copy of the polygon with the

 passed ID value. The new polygon will have a unique ID.

 Polygon=Project.copyPolygonUsingId(Polygon) Makes a copy of the passed

 polygon. The new polygon will have a unique ID.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingIndex,

 SonnetProject/duplicatePolygon,

 SonnetProject/duplicatePolygonUsingId,

 SonnetProject/duplicatePolygonUsingIndex,

 copyPolygonUsingIndex Makes a copy of a polygon and adds it to the project

 Polygon=Project.copyPolygonUsingIndex(N) Returns a copy of the Nth polygon

 in the array of polygons. The new polygon will have a unique debug ID.

 Polygon=Project.copyPolygonUsingIndex(Polygon) Returns a copy of the passed

 polygon. The new polygon will have a unique ID. The new polygon will be

 returned.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingId

 SonnetProject/duplicatePolygon,

 SonnetProject/duplicatePolygonUsingId,

 SonnetProject/duplicatePolygonUsingIndex,

 defineNewArrayMetalType Defines a new type of via metal

 Project.defineNewArrayMetalType(Name,R,X) will define

 an arrat metal type for the project.

 Note: This method is only for geometry projects.

 Note: This method is only for Sonnet version 13 projects.

 Example usage:

 % Define a new array metal type named 'ArrayMetal1'

 Project.defineNewArrayMetalType('ArrayMetal1',50,100);

 See also SonnetProject/defineNewViaMetalType

 defineNewBrickType New anisotropic dielectric brick type

 Project.defineNewBrickType(...) will add a

 dielectric brick type to the array of brick types.

 There are two ways to use defineNewBrickType. The user

 may define a brick type using a set of custom options or

 the user may define a type using a predefined property set

 from the Sonnet library.

 If defineNewBrickType is used to import a brick type from the

Method Reference

Version 4.0

 Sonnet library then the following arguments must be specified

 1) The name of the material

 defineNewBrickType can be used to add an Isotropic Dielectric

 brick type to the project by specifying the following parameters.

 1) The name of the dielectric

 2) Relative dielectric constant

 3) Loss tangent

 4) Bulk conductivity

 defineNewBrickType can be used to add an anisotropic Dielectric

 brick type to the project by specifying the following parameters.

 1) The name of the dielectric

 2) Relative dielectric constant in the X direction

 3) Loss tangent in the X direction

 4) Bulk conductivity in the X direction

 5) Relative dielectric constant in the Y direction

 6) Loss tangent in the Y direction

 7) Bulk conductivity in the Y direction

 8) Relative dielectric constant in the Z direction

 9) Loss tangent in the Z direction

 10) Bulk conductivity in the Z direction

 Note: This method is only for geometry projects.

 Example usage:

 % Define the Aluminum Nitride brick material

 % using the Sonnet material library

 Project.defineNewBrickType('Aluminum Nitride');

 % Make a new brick material named 'Brick1' with

 % a relative dielectric constant of 1, a loss

 % tangent of 2 and a bulk conductivity of 3.

 Project.defineNewBrickType('Brick1',1,2,3);

 % Make a new brick material named 'Brick1' with

 % the following settings:

 % X direction:

 % relative dielectric constant of 1

 % loss tangent of 2

 % bulk conductivity of 3

 % Y direction:

 % relative dielectric constant of 4

 % loss tangent of 5

 % bulk conductivity of 6

 % Z direction:

 % relative dielectric constant of 7

 % loss tangent of 8

 % bulk conductivity of 9

 Project.defineNewBrickType('Brick1',1,2,3,4,5,6,7,8,9);

 See also SonnetProject.addIsotropicDielectricBrickType

 defineNewGeneralMetalType Defines a new type of metal

 Project.defineNewGeneralMetalType(Name,Resistance,SkinCoefficient,

 Reactance,KineticInductance) will add a general type of

 metal to the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

Method Reference

Version 4.0

 % Define a new general metal type named 'GeneralMetal1'

 % with a resistance of 100, a skin coefficient of 50,

 % a reactance of 50 and a kinetic inductance of 50.

 Project.defineNewGeneralMetalType('GeneralMetal1',100,50,50,50);

 See also SonnetProject/defineNewMetalType

 defineNewMetalType Create a new type of metal

 Project.defineNewMetalType(...) will add

 a metal type to the project.

 There are two ways to use defineNewMetalType. The user

 may define a metal type using a set of custom options or

 the user may define a type using a predefined property set

 from the Sonnet library.

 If defineNewMetalType is to import a metal type from the

 Sonnet library then the following arguments must be specified

 1) The name of the metal

 2) The metal's thickness

 If defineNewMetalType is to be used to define a custom

 metal type then the user must first specify the type of

 metal that is being defined and then specify the parameters

 for the metal type.

 defineNewMetalType requires a type as

 the first argument which should

 be one of the following:

 NOR - Normal Metal

 RES - Resistor Metal

 NAT - Native Metal

 SUP - General Metal

 SEN - Sense Metal

 TMM - Thick Metal

 ROG - Rough Metal

 Then you will need to supply the necessary

 arguments for each type as follows:

 NOR-Normal Metal

 1) The Name of the metal

 2) The Conductivity of the metal

 3) The Current Ratio of the metal

 4) The Thickness of the metal

 RES-Resistor Metal

 1) The Name of the metal

 2) The Resistance of the metal

 NAT-Native Metal

 1) The Name of the metal

 2) The Resistance of the metal

 3) The Skin Coefficient of the metal

 SUP-General Metal

 1) The Name of the metal

 2) The Resistance of the metal

 3) The Skin Coefficient of the metal

 4) The Reactance of the metal

 5) The Kinetic Inductance of the metal

Method Reference

Version 4.0

 SEN-Sense Metal

 1) The Name of the metal

 2) The Reactance of the metal

 TMM-Thick Metal

 1) The Name of the metal

 2) The Conductivity of the metal

 3) The Current Ratio of the metal

 4) The Thickness of the metal

 5) The Number of Sheets of the metal

 ROG-Rough Metal

 1) The Name of the metal

 2) The Thickness of the metal

 3) The Conductivity of the metal

 4) The Current Ratio of the metal

 5) The Number of Sheets

 6) The Roughness

 7) Whether the top is rough or smooth ('S' for smooth,

 'R' for Rough)

 8) Whether the bottom is rough or smooth ('S' for

 smooth, 'R' for Rough)

 Note: This method is only for geometry projects.

 Note: For Sonnet 13 projects planar metal types are

 different than via metal types. For information

 on how to define via metal types see the help

 information for defineNewViaMetalType.

 Example usage:

 % Import aluminum from the Sonnet metal library

 Project.defineNewMetalType('Aluminum',1.4);

 % Define a new normal metal type named 'NormalMetal1'

 % of conductivity 58000000, current ratio 50 and thickness 50.

 Project.defineNewMetalType('NOR','NormalMetal1',58000000,50,50);

 % Define a new resistor metal type named 'ResistorMetal1'

 % with a resistance of 100.

 Project.defineNewMetalType('RES','ResistorMetal1',100);

 % Define a new native metal type named 'NativeMetal1'

 % with a resistance of 100 and a skin coefficient of 50

 Project.defineNewMetalType('NAT','NativeMetal1',100,50);

 % Define a new general metal type named 'GeneralMetal1'

 % with a resistance of 100, a skin coefficient of 50,

 % a reactance of 50 and a kinetic inductance of 50.

 Project.defineNewMetalType('SUP','GeneralMetal1',100,50,50,50);

 % Define a new sense metal type named 'SenseMetal1'

 % with a reactance of 50

 Project.defineNewMetalType('SEN','SenseMetal1',50);

 % Define a new thick metal type named 'ThickMetal1'

 % with a conductivity of 58000000, a current ratio of 50,

 % a thickness of 50, and is comprised of 2 sheets.

 Project.defineNewMetalType('TMM','ThickMetal1',58000000,50,50,2);

 % Define a new rough metal type named 'RoughMetal1'

 % of roughness 3, current ratio 10, 1 sheet, and thickness 50.

 Project.defineNewMetalType('ROG','RoughMetal1',50,58000000,10,1,3,'S','R');

Method Reference

Version 4.0

 See also SonnetProject/defineNewNormalMetalType,

 SonnetProject/defineNewResistorMetalType,

 SonnetProject/defineNewNativeMetalType,

 SonnetProject/defineNewGeneralMetalType,

 SonnetProject/defineNewSenseMetalType,

 SonnetProject/defineNewThickMetalType,

 SonnetProject/defineNewRoughMetalType

 defineNewNativeMetalType Defines a new type of metal

 Project.defineNewNativeMetalType(Name,Resistance,SkinCoefficient) will

 add a native type of metal to the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new native metal type named 'NativeMetal1'

 % with a resistance of 100 and a skin coefficient of 50

 Project.defineNewNativeMetalType('NativeMetal1',100,50);

 See also SonnetProject/defineNewMetalType

 defineNewNormalMetalType Defines a new type of metal

 Project.defineNewNormalMetalType(Name,Conductivity,CurrentRatio,Thickness)

 will add a normal type of metal to the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new normal metal type named 'Copper'

 % of conductivity 58000000, current ratio 0 and thickness 1.4.

 Project.defineNewNormalMetalType('Copper',58000000,0,1.4);

 See also SonnetProject/defineNewMetalType

 defineNewResistorMetalType Defines a new type of metal

 Project.defineNewResistorMetalType(Name,Resistance) will

 add a resistor type of metal to the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new resistor metal type named 'ResistorMetal1'

 % with a resistance of 100.

 Project.defineNewResistorMetalType('ResistorMetal1',100);

 See also SonnetProject/defineNewMetalType

 defineNewRoughMetalType Defines a new type of metal

 Project.defineNewRoughMetalType(...) will add a rough type of

 metal to the array of metal types.

 defineNewRoughMetalType requires the following arguments:

Method Reference

Version 4.0

 1) The Name of the metal

 2) The Thickness of the metal

 3) The Conductivity

 4) The Current Ratio of the metal

 5) The Number of Sheets

 6) The Roughness

 7) Whether the top is rough or smooth ('S' for smooth, 'R' for Rough)

 8) Whether the bottom is rough or smooth ('S' for smooth, 'R' for Rough)

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new rough metal type named 'RoughMetal1'

 % of roughness 3, current ratio 10, 1 sheet, and thickness 50.

 Project.defineNewRoughMetalType('RoughMetal1',50,58000000,10,1,3,'S','R');

 See also SonnetProject/defineNewMetalType

 defineNewSenseMetalType Defines a new type of metal

 Project.defineNewSenseMetalType(Name,Reactance) will

 add a Sense type of metal to the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new sense metal type named 'SenseMetal1'

 % with a reactance of 50

 Project.defineNewSenseMetalType('SenseMetal1',50);

 See also SonnetProject/defineNewMetalType

 defineNewSurfaceMetalType Defines a new type of via metal

 Project.defineNewSurfaceMetalType(Name,Rdc,Rrf,Xdc) will define

 a surface metal type for the project.

 Note: This method is only for geometry projects.

 Note: This method is only for Sonnet version 13 projects.

 Example usage:

 % Define a new surface metal type named 'SurfaceMetal1'

 Project.defineNewSurfaceMetalType('SurfaceMetal1',5,5,5);

 See also SonnetProject/defineNewViaMetalType

 defineNewThickMetalType Defines a new type of metal

 Project.defineNewThickMetalType(Name,Conductivity,CurrentRatio,

 Thickness,NumSheets) will add a Thick Metal type of metal to

 the array of metals.

 Note: This method is only for geometry projects.

 Example usage:

 % Define a new thick metal type named 'ThickMetal1'

 % with a conductivity of 100, a current ratio of 50,

Method Reference

Version 4.0

 % a thickness of 50, and is comprised of 2 sheets.

 Project.defineNewThickMetalType('ThickMetal1',100,50,50,2);

 See also SonnetProject/defineNewMetalType

 defineNewViaMetalType Create a new type of via metal

 Project.defineNewViaMetalType(...) will add

 a via metal type to the project.

 There are two ways to use defineNewViaMetalType. The user

 may define a metal type using a set of custom options or

 the user may define a type using a predefined property set

 from the Sonnet library.

 If defineNewViaMetalType is to import a metal type from the

 Sonnet library then the following arguments must be specified

 1) The name of the metal

 2) The metal's thickness

 If defineNewViaMetalType is to be used to define a custom

 metal type then the user must first specify the type of

 metal that is being defined and then specify the parameters

 for the metal type.

 defineNewViaMetalType requires a type as

 the first argument which should

 be one of the following:

 VOL - Volume Metal

 SFC - Surface Metal

 ARR - Array Metal

 Then you will need to supply the necessary

 arguments for each type as follows:

 VOL - Volume Metal

 1) The Name of the metal

 2) The Conductivity of the metal (inf for infinite)

 3) The Wall thickness (-1 or 'Solid' for solid)

 SFC - Surface Metal

 1) The Name of the metal

 2) The Rdc value

 3) The Rrf value

 4) The Xdc value

 ARR - Array Metal

 1) The Name of the metal

 2) The Conductivity value

 3) The Fill Factor

 Note: This method is only for geometry projects.

 Note: This method is only for Sonnet version 13 projects.

 Example usage:

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity and a wall thickness of 1.4 mils.

 Project.defineNewViaMetalType('VOL','Aluminum',3.72e7,1.4);

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity with a solid via wall.

Method Reference

Version 4.0

 Project.defineNewViaMetalType('VOL','Aluminum2',3.72e7,-1);

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity with a solid via wall.

 Project.defineNewVolumeMetalType('Aluminum2',3.72e7,'Solid');

 % Define a new array metal type named 'ArrayMetal1'

 Project.defineNewViaMetalType('ARR','ArrayMetal1',50,100);

 % Define a new surface metal type named 'SurfaceMetal1'

 Project.defineNewViaMetalType('SFC','SurfaceMetal1',5,5,5);

 See also SonnetProject/defineNewMetalType

 defineNewVolumeMetalType Defines a new type of via metal

 Project.defineNewVolumeMetalType(theName,theConductivity,

 theWallThickness) will define a volume metal type for the project.

 If the wall should be solid then either pass -1 as the wall thickness

 or the string 'Solid' (case insensitive).

 Note: This method is only for geometry projects.

 Note: This method is only for Sonnet version 13 projects.

 Example usage:

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity and a wall thickness of 1.4 mils.

 Project.defineNewVolumeMetalType('Aluminum',3.72e7,1.4);

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity with a solid via wall.

 Project.defineNewVolumeMetalType('Aluminum2',3.72e7,-1);

 % Make an aluminum volume metal type with 3.72e7 s/m

 % conductivity with a solid via wall.

 Project.defineNewVolumeMetalType('Aluminum2',3.72e7,'Solid');

 See also SonnetProject/defineNewViaMetalType

 defineVariable Define a Geometry/Netlist Variable

 Project.defineVariable(Name,Value) When used with

 a geometry project will define a new geometry

 variable. When used with a netlist project defineVariable

 will define a new Netlist parameter.

 Project.defineVariable(Name,Value,Type) When used with

 a geometry project will define a new geometry variable of

 the specified type. When used with a netlist project

 the value of Type is ignored and defineVariable

 will define a new Netlist parameter.

 Type may be one of the following values:

 LNG Length

 RES Resistance

 CAP Capacitance

 IND Inductance

 FREQ Frequency

 OPS Ohms/sq

 SPM Siemens/meter

 PHPM picoHenries/meter

Method Reference

Version 4.0

 RRF Rrf

 NONE Undefined

 If the specified variable or parameter already

 exists its value will be replaced.

 Example usage:

 Project.defineVariable('Z0',50)

 Project.defineVariable('Length',50,'LNG')

 deleteComponent Delete a component

 Project.deleteComponent(Id) will delete the component

 with the passed ID from the array of components.

 Project.deleteComponent(Component) will delete the

 passed component from the array of components.

 Project.deleteComponent(Name) will delete the component

 with the passed name from the array of components.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the component with debug ID 12

 Project.deleteComponent(12);

 deletePolygonUsingId Delete a polygon

 Project.deleteComponentUsingId(Id) will delete the component

 with the passed ID from the array of components.

 Project.deleteComponentUsingId(Component) will delete the

 passed component from the array of components.

 Project.deleteComponent(Name) will delete the component

 with the passed name from the array of components.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the component with debug ID 12

 Project.deleteComponentUsingId(12);

 deleteComponentUsingIndex Deletes a component from the project

 Project.deleteComponentUsingIndex(N) will delete the Nth component

 in the array of components

 Project.deleteComponentUsingIndex(Component) will delete the

 passed component from the array of components.

 Project.deleteComponent(Name) will delete the component

 with the passed name from the array of components.

 This operation can also be achieved with

 Project.GeometryBlock.ArrayOfComponents(N)=[];

 Note: This method is only for geometry projects.

Method Reference

Version 4.0

 Example usage:

 % Delete the 5th component in the array of components

 Project.deleteComponentUsingIndex(5);

 deleteDuplicatePolygons Deletes duplicate polygons

 Project.deleteDuplicatePolygons() will search for duplicate polygons in the

 project and delete one of the duplicate occurrences such

 that there will no longer be a pair of duplicate polygons.

 Note: This method is only for geometry projects.

 Example usage:

 Project.deleteDuplicatePolygons();

 See also SonnetProject/findDuplicatePolygons

 deleteLayer Deletes a layer from the project

 Project.deleteLayer(N) will delete the Nth

 dielectric layer from the array of

 dielectric layers.

 This operation can also be achieved with

 Project.GeometryBlock.SonnetBox.ArrayOfDielectricLayers(N)=[];

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the 2nd layer in the array of layers

 Project.deletePolygon(5);

 deletePolygon Delete a polygon

 Project.deletePolygon(Id) will delete the polygon

 with the passed ID from the array of polygons. If any ports,

 edge vias or parameters are connected to the polygon then

 they will be deleted as well.

 Project.deletePolygon(Polygon) will delete the

 passed polygon from the array of polygons. If any ports,

 edge vias or parameters are connected to the polygon then

 they will be deleted as well.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the polygon with debug ID 12

 BooleanWasThePolygonDeleted=Project.deletePolygon(12);

 deletePolygonUsingId Delete a polygon

 Project.deletePolygonUsingId(Id) will delete the polygon

 with the passed ID from the array of polygons. If any ports,

 edge vias or parameters are connected to the polygon then

Method Reference

Version 4.0

 they will be deleted as well.

 Project.deletePolygonUsingId(Polygon) will delete the

 passed polygon from the array of polygons. If any ports,

 edge vias or parameters are connected to the polygon then

 they will be deleted as well.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the polygon with debug ID 12

 BooleanWasThePolygonDeleted=Project.deletePolygonUsingId(12);

 deletePolygonUsingIndex Deletes a polygon from the project

 Project.deletePolygonUsingIndex(N) will delete the Nth polygon

 in the array of polygons. If any ports, edge vias or parameters

 are connected to the polygon then they will be deleted as well.

 Project.deletePolygonUsingIndex(Polygon) will delete the

 passed polygon from the array of polygons. If any ports,

 edge vias or parameters are connected to the polygon then

 they will be deleted as well.

 This operation can also be achieved with

 Project.GeometryBlock.ArrayOfPolygons(N)=[];

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the 5th polygon in the array of polygons

 Project.deletePolygonUsingIndex(5);

 deletePort Deletes a port

 Project.deletePort(N) will delete

 the port represented by the port

 number N from the project.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete port number one from a project

 Project.deletePort(1);

 See also SonnetProject/deletePortUsingIndex

 deletePortUsingIndex Deletes a port

 Project.deletePortUsingIndex(N) will delete

 the Nth port in the array of ports.

 Note: This method is only for geometry projects.

 Example usage:

 % Delete the first port in a project

 Project.deletePortUsingIndex(1);

 See also SonnetProject/deletePort

Method Reference

Version 4.0

 detectAllOptimizationVariables Adds all optimization variables

 Project.detectAllOptimizationVariables() will make an

 optimization variable entry for every dimensional parameter

 in the project. All of the optimization parameters will be

 disabled by default.

 See also SonnetProject/editOptimizationVariable

 disableCurrentCalculations Disable current calculations

 Project.disableCurrentCalculations will disable current

 density calculation for this project. This setting can

 be enabled with the 'enableCurrentCalculations()' function.

 Note: This method is only for geometry projects.

 See also SonnetProject/viewCurrents,

 SonnetProject/enableCurrentCalculations

 displayPolygons Displays polygon information

 Project.displayPolygons() will print out

 the index, ID, centroid point, mean point,

 type, level and metal type for all the

 polygons in the project.

 displayPolygons('Short') will print out

 the index, ID, centroid point, mean point,

 type, level and metal type for all the

 polygons in the project.

 displayPolygons('Long') will print

 all of the properties for all of

 the polygons in the project.

 Note: This method is only for geometry projects.

 See also SonnetProject/drawCircuit

 drawCircuit 3D circuit diagram

 n=Project.drawCircuit() will create a new Matlab figure

 that will plot a 3D view of the circuit. The

 Matlab figure number will be n.

 n=drawCircuit(n) will use the Matlab figure

 window number n to draw a 3D view of the circuit.

 Note: This method is only for geometry projects.

 See also SonnetProject/displayPolygons

 duplicatePolygon Makes a copy of a polygon and adds it to the project

 Polygon=Project.duplicatePolygon(ID) Makes a copy of the polygon with the

 passed ID value and adds the copy to the end of the array of polygons.

 The new polygon will have a unique ID. The new polygon will be returned.

Method Reference

Version 4.0

 Polygon=Project.duplicatePolygon(Polygon) Makes a copy of the passed

 polygon and adds the copy to the end of the array of polygons.

 The new polygon will have a unique ID. The new polygon will be returned.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingId,

 SonnetProject/copyPolygonUsingIndex,

 SonnetProject/duplicatePolygonUsingId,

 SonnetProject/duplicatePolygonUsingIndex

 duplicatePolygonUsingId Makes a copy of a polygon and adds it to the project

 Polygon=Project.duplicatePolygonUsingId(ID) Makes a copy of the

 polygon with the passed ID value and adds the copy to the end of

 the array of polygons. The new polygon will have a unique ID. The

 new polygon will be returned.

 Polygon=Project.duplicatePolygonUsingId(Polygon) Makes a copy of

 the passed polygon and adds the copy to the end of the array of

 polygons. The new polygon will have a unique ID. The new polygon

 will be returned.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingId,

 SonnetProject/copyPolygonUsingIndex,

 SonnetProject/duplicatePolygon,

 SonnetProject/duplicatePolygonUsingIndex

 duplicatePolygonUsingIndex Makes a copy of a polygon and adds it to the project

 Polygon=Project.duplicatePolygonUsingIndex(N) Makes a copy of the Nth

 polygon in the array of polygons and adds the copy to the end of the

 array of polygons. The new polygon will have a unique debug ID. The

 new polygon will be returned.

 Polygon=Project.duplicatePolygonUsingIndex(Polygon) Makes a copy of the

 passed polygon and adds the copy to the end of the array of polygons.

 The new polygon will have a unique ID. The new polygon will be returned.

 Note: This method is only for geometry projects.

 See also SonnetProject/copyPolygon,

 SonnetProject/copyPolygonUsingId,

 SonnetProject/copyPolygonUsingIndex,

 SonnetProject/duplicatePolygon,

 SonnetProject/duplicatePolygonUsingId

 editOptimizationVariable Edit values for an optimization variable

 Project.editOptimizationVariable(...) will allow users to edit the

 parameters for an optimization.

 This function requires the following inputs:

 1) The name of the variable to be modified

 2) The minimum value for the variable

 3) The maximum value for the variable

Method Reference

Version 4.0

 4) The step value with which we are sweeping

 from the minimum value to the maximum value.

 5) Either 'Y' to specify the variable

 is being used or 'n' to specify that the

 variable is not being used.

 Example usage:

 Project.editOptimizationVariable('dim',5,10,1,'Y')

 See also SonnetProject/detectAllOptimizationVariables

 enableCurrentCalculations Enable current calculations

 Project.enableCurrentCalculations() will enable current

 density calculation for this project. The project will

 need to be simulated before current density information

 will be available. Be aware that current density

 calculations can be time consuming.

 Note: This method is only for geometry projects.

 See also SonnetProject/viewCurrents,

 SonnetProject/disableCurrentCalculations

 estimateMemoryUsage Estimate memory usage

 [megabytes subsections]=Project.estimateMemoryUsage() will save the

 Sonnet project and call Sonnet's built in memory estimator.

 The number of megabytes required for simulation and the number

 of subsections are returned. The project must contain

 analysis frequencies before this method may be used.

 [megabytes subsections]=Project.estimateMemoryUsage() will save the

 Sonnet project and call Sonnet's built in memory estimator.

 The number of megabytes required for simulation and the number

 of subsections are returned. The project must contain

 analysis frequencies before this method may be used.

 Sonnet will only estimate the memory usages for geometry projects.

 Note: This method will save the project to the hard drive. If

 there hasn't been a filename associated with this project

 an error will be thrown. A filename may be specified using

 the saveAs method (see "help SonnetProject.saveAs")

 Example usage:

 % Use the most recently installed version of Sonnet

 % to estimate memory and subsections.

 [MegaBytesOfMemory NumberOfSubsections]=Project.estimateMemoryUsage();

 % Use Sonnet version 12.52 to estimate memory and subsections.

 [MegaBytesOfMemory NumberOfSubsections]=Project.estimateMemoryUsage('C:\Program

Files\sonnet.12.52');

 See also SonnetProject/simulate

 exportCurrents Exports current data

 Project.exportCurrents(...) will call Sonnet and export

 the current data for a region of a layout. This method

Method Reference

Version 4.0

 will save and simulate the project first. Current

 calculations will be enabled for the project.

 There are two approaches to calling this method:

 The first approach is the pass the method an

 Sonnet current data request configuration file.

 Example: Project.exportCurrents(aRequestFile);

 The second approach to calling this method involves passing

 arguments that would specify the output settings such that

 the method will essentially build an output configuration

 file. The arguments are the following:

 1) Region - The region must be either a JXYLine object,

 a JXYRectangle object or []. If the region

 is [] then the currents for the entire layout

 will be outputted.

 2) Type - The type must be either 'JX','JY', or 'JXY'.

 3) Ports - The ports should be either a vector of JXYPort

 objects or a matrix that stores the voltage and

 phase values for each port. The user only has

 to define values for ports that have non-zero

 voltage or phase values. When using a matrix

 the data must be formated as follows:

 [PortNumber, Voltage, Phase;

 PortNumber, Voltage, Phase; ...]

 4) Frequency - A vector specifying the desired frequency values.

 Values should be specified in the same units as the project.

 5) (Optional) X Grid Size - This determines the X direction resolution

 of the exported data. The grid size is the

 seperation between two data points. The first

 value in the series is half of the grid size.

 Ex: a value of two would provide data at the

 points 1,3,5,7... If the grid X size is

 unspecified then the cell size from the project

 will be utilized.

 6) (Optional) Y Grid Size - This determines the Y direction resolution of

 the exported data. If the grid Y size

 is unspecified then the cell size from the

 project will be utilized.

 7) (Optional) Level - Specifies what metallization level(s)

 should be outputted. The level should be [] if

 all levels should be outputted. The level should

 be a single number (Ex: 4) if only one level

 should be outputted. If a range of levels

 should be outputted then the level should be a

 vector in the form of [startLevel, endLevel].

 8) (Optional) Complex - Should be either true or false. True indicates that

 current data should be returned as complex numbers.

 If the user would like to specify values for

 parameters they may use the last two arguments.

 9) ParameterName - Should be either a vertical vector of strings

 (use strvcat) or a cell array of strings.

 10) ParameterValue - Should be either a vector or a cell array of values

 such that the Nth element of ParameterValue is

 the value for the parameter specified by the Nth

 element of ParameterName.

 Note: This method is only for geometry projects.

 Note: This method will only work for Sonnet version 13 and later.

Method Reference

Version 4.0

 This method will look for Sonnet 13 installations and use the

 one with the latest install date.

 Note: This method will save the project to the hard drive. If

 there hasn't been a filename associated with this project

 an error will be thrown. A filename may be specified using

 the saveAs method (see "help SonnetProject.saveAs")

 See also SonnetProject/viewCurrents,

 SonnetProject/enableCurrentCalculations,

 SonnetProject/disableCurrentCalculations

 findComponentUsingId Search for a component using its ID

 [index component]=Project.findComponentUsingId(name) accepts

 the Debug ID for a component and returns the component's

 index in the array of components and a reference to the

 component. If the supplied component is not in the array

 then [] is returned.

 [index component]=Project.findComponentUsingId(Id) accepts

 the Debug ID for a component and returns the component's

 index in the array of components and a reference to the

 component. If the supplied component is not in the array

 then [] is returned.

 Note: This method is only for geometry projects.

 Example usage:

 % Find the component's index and obtain a reference to it

 [ComponentIndex,ComponentObject]=Project.findComponentUsingId('R1');

 % Find the component's index and obtain a reference to it

 [ComponentIndex,ComponentObject]=Project.findComponentUsingId(5);

 See also SonnetProject/getComponent

 findDuplicatePolygons Finds duplicate polygons

 [Polygons Indices NumberOfMatches]=Project.findDuplicatePolygons() searches

 for duplicate polygons in the project. The polygon references to the

 duplicates are returned along with their indices.

 Note: This method is only for geometry projects.

 Example usage:

 [Polygons PolygonIndex NumberOfMatches]=Project.findDuplicatePolygons();

 See also SonnetProject/deleteDuplicatePolygons

 findParameterIndex Find parameter index

 [numIndex arrayOfIndex]=Project.findParameterIndex(name) returns the

 number of indices and an array of indices index of the parameter

 in a Sonnet Project based on its name.

 Note: This method is only for geometry projects.

Method Reference

Version 4.0

 findPolygonIndex Search for a polygon index

 index=Project.findPolygonIndex(Polygon) will search for the

 index of a polygon in the array of polygons. If the polygon

 is not found in the polygon array then [] is returned.

 Note: This method is only for geometry projects.

 Example usage:

 % Find the index of a particular polygon

 index=Project.findPolygonIndex(polygon);

 See also SonnetProject/scalePolygon

 findPolygonUsingCentroidX Finds a polygon given its centroid

 [polygon ID index]=Project.findPolygonUsingCentroidX(X) finds

 polygons have an centroid x coordinate of 'X'.

 [polygon ID index]=Project.findPolygonUsingCentroidX(X,Layer) finds

 polygons have an centroid x coordinate of 'X' on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingCentroidX(X,Layer,Size) finds

 polygons have an centroid x coordinate of 'X' and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer that have a

 % centroid X value of zero.

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingCentroidX(0);

 See also SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingCentroidY

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingCentroidXY Finds a polygon given its centroid

 [polygon ID index]=Project.findPolygonUsingCentroidXY(X,Y) finds

 polygons have an centroid coordinate of ('X','Y').

 [polygon ID index]=Project.findPolygonUsingCentroidXY(X,Y,Layer) finds

 polygons have an centroid coordinate of ('X','Y') on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingCentroidXY(X,Y,Layer,Size) finds

 polygons have an centroid coordinate of ('X','Y') and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer

 % that have a centroid at (0,0)

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingCentroidXY(0,0);

Method Reference

Version 4.0

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingCentroidY Finds a polygon given its centroid

 [polygon ID index]=Project.findPolygonUsingCentroidY(Y) finds

 polygons have an centroid y coordinate of 'Y'.

 [polygon ID index]=Project.findPolygonUsingCentroidY(Y,Layer) finds

 polygons have an centroid y coordinate of 'Y' on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingCentroidY(Y,Layer,Size) finds

 polygons have an centroid y coordinate of 'Y' and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer that have a

 % centroid Y value of zero.

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingCentroidY(0);

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingFunction Finds a polygon using a function

 [polygon ID index]=Project.findPolygonUsingFunction(Function) finds

 polygons using a particular user specified function.

 The passed function is expected to receive an argument of

 type SonnetGeometryPolygon and return a Boolean. The

 function should return true if the polygon should be

 included in the returned results.

 Because the polygon gets sent to a user made function the

 passed function may modify the polygon whilst inside the

 passed function.

 Note: This method is only for geometry projects.

 Example usage:

 % This dummy function returns all polygons

 % that have an X Centroid greater than 50.

 function result=dummySearch(polygon)

 if polygon.CentroidXCoordinate > 50

 result=true;

 else

 result=false;

 end

 end

Method Reference

Version 4.0

 % Find all polygons on any layer that have a

 % centroid X coordinate greater than 50

 [PolygonObject PolygonId IndexInArray]=...

 Project.findPolygonUsingFunction(@dummySearch);

 See also SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingId Search for a polygon using its ID

 [index polygon]=Project.findPolygonUsingId(Id) accepts

 the Debug ID for a polygon and returns the polygon's

 index in the array of polygons and a reference to the

 polygon. If the supplied polygon is not in the array

 then [] is returned.

 Note: This method is only for geometry projects.

 Example usage:

 % Find the polygon's index and obtain a reference to it

 [polygonIndex,polygonObject]=Project.findPolygonUsingId(12);

 See also SonnetProject/findPolygonIndex

 findPolygonUsingMeanX Finds a polygon given its mean

 [polygon ID index]=Project.findPolygonUsingMeanX(X) finds

 polygons have an mean x coordinate of 'X'.

 [polygon ID index]=Project.findPolygonUsingMeanX(X,Layer) finds

 polygons have an mean x coordinate of 'X' on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingMeanX(X,Layer,Size) finds

 polygons have an mean x coordinate of 'X' and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer that have a

 % mean X value of zero.

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingMeanX(0);

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingMeanXY Finds a polygon given its mean

Method Reference

Version 4.0

 [polygon ID index]=Project.findPolygonUsingMeanXY(X,Y) finds

 polygons have an mean coordinate of ('X','Y').

 [polygon ID index]=Project.findPolygonUsingMeanXY(X,Y,Layer) finds

 polygons have an mean coordinate of ('X','Y') on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingMeanXY(X,Y,Layer,Size) finds

 polygons have an mean coordinate of ('X','Y') and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer that have a

 % mean at (0,0)

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingMeanXY(0,0);

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingMeanY Finds a polygon given its mean

 [polygon ID index]=Project.findPolygonUsingMeanY(Y) finds

 polygons have an mean y coordinate of 'Y'.

 [polygon ID index]=Project.findPolygonUsingMeanY(Y,Layer) finds

 polygons have an mean y coordinate of 'Y' on the metallization

 layer specified by 'Layer'.

 [polygon ID index]=Project.findPolygonUsingMeanY(Y,Layer,Size) finds

 polygons have an mean y coordinate of 'Y' and a size of 'Size' on

 the metallization layer specified by 'Layer'.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer that have a

 % mean Y value of zero.

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingMeanY(0);

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanXY,

 SonnetProject/findPolygonUsingPoint

 findPolygonUsingPoint Find a polygon that contains a particular coordinate pair

 [polygon ID index]=Project.findPolygonUsingPoint(X,Y) finds a

 polygon in the array of polygons given an X and Y coordinate pair

 that is within the polygon. This method returns a reference to the

 polygon object, the polygon's Debug Id, and the index for the polygon

 in the cell array of polygons. If the supplied point is within more

 than one polygon all of the polygons are returned.

Method Reference

Version 4.0

 [polygon ID index]=Project.findPolygonUsingPoint(X,Y,Level) finds a

 polygon in the array of polygons given an X and Y coordinate pair

 that is within the polygon. Only polygons on the specified layer are

 checked. This method returns a reference to the polygon object, the

 polygon's Debug Id, and the index for the polygon in the cell array

 of polygons. If the supplied point is within more than one polygon

 all of the polygons are returned.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all polygons on any layer

 % encompass the point (0,0)

 [PolygonObject PolygonId IndexInArray]=Project.findPolygonUsingPoint(0,0);

 See also SonnetProject/findPolygonUsingCentroidX,

 SonnetProject/findPolygonUsingCentroidY,

 SonnetProject/findPolygonUsingCentroidXY,

 SonnetProject/findPolygonUsingMeanX,

 SonnetProject/findPolygonUsingMeanY,

 SonnetProject/findPolygonUsingMeanXY

 findPort Finds a port

 [Port PortNumber Index]=Project.findPort(N) will

 find the port with the port number N in the array

 of ports.

 Note: This method is only for geometry projects.

 See also SonnetProject/findPortUsingPoint

 findPortUsingPoint Find a port given an approximate location

 [Port PortNumber Index]=Project.findPortUsingPoint(X, Y) finds a port

 in the array of ports given an (X,Y) coordinate pair that is near the port.

 This method returns a reference to the port object, the port number,

 and the index for the port in the cell array of ports. If all the ports

 are beyond a certain distance from the location then an error will be

 thrown.

 [Port PortNumber Index]=Project.findPortUsingPoint(X, Y, Level) finds a port

 in the array of ports given an (X,Y) coordinate pair that is near the port.

 only ports on the specified level will be checked. This method returns a

 reference to the port object, the port number, and the index for the port

 in the cell array of ports. If all the ports are beyond a certain distance

 from the location then an error will be thrown.

 Note: This method is only for geometry projects.

 Example usage:

 % Find all ports on any layer that are near (0,120)

 [thePort thePortNumber theIndex]=Project.findPortUsingPoint(0,120);

 See also SonnetProject/findPortsInGroup

 findPortUsingPoint Find a port given an approximate location

Method Reference

Version 4.0

 [Port PortNumber Index]=Project.findPortsInGroup(GroupName) finds

 all the ports in the specified group name.

 Note: This method is only for geometry projects.

 See also SonnetProject/findPortUsingPoint

 findVariableIndex find the index of a variable in the SonnetProject

 index=Project.findVariableIndex(name) returns the index of a variable in a Sonnet

 Project (layout or netlist) based on its name.

 flipPolygonX Flips a polygon about its center X axis

 Project.flipPolygonX(Polygon) will flip

 the passed polygon over its X axis.

 Project.flipPolygonX(ID) will flip the polygon

 which has the passed ID over its X axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

 aPolygon=Project.GeometryBlock.ArrayOfPolygons{1};

 Project.flipPolygonX(aPolygon)

 flipPolygonXUsingId Flips a polygon about its center X axis

 Project.flipPolygonXUsingId(ID) will flip the

 polygon which has the passed ID over its X axis.

 Project.flipPolygonXUsingId(Polygon) will

 flip the passed polygon over its X axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

 aId=Project.GeometryBlock.ArrayOfPolygons{1}.DebugId;

 Project.flipPolygonXUsingId(aId)

 flipPolygonXUsingIndex Flips a polygon about its center X axis

 Project.flipPolygonXUsingId(N) will flip the Nth

 polygon in the array of polygons over its X axis.

 Project.flipPolygonXUsingId(Polygon) will

 flip the passed polygon over its X axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

Method Reference

Version 4.0

 Project.flipPolygonX(1)

 flipPolygonY Flips a polygon about its center Y axis

 Project.flipPolygonY(Polygon) will flip

 the passed polygon over its Y axis.

 Project.flipPolygonY(ID) will flip the polygon

 which has the passed ID over its Y axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

 aPolygon=Project.GeometryBlock.ArrayOfPolygons{1};

 Project.flipPolygonY(aPolygon)

 flipPolygonY Flips a polygon about its center Y axis

 Project.flipPolygonYUsingId(ID) will flip the

 polygon which has the passed ID over its Y axis.

 Project.flipPolygonYUsingId(Polygon) will

 flip the passed polygon over its Y axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

 aId=Project.GeometryBlock.ArrayOfPolygons{1}.DebugId;

 Project.flipPolygonY(aId)

 flipPolygonYUsingIndex Flips a polygon about its center Y axis

 Project.flipPolygonYUsingId(N) will flip the Nth

 polygon in the array of polygons over its Y axis.

 Project.flipPolygonYUsingId(Polygon) will

 flip the passed polygon over its Y axis.

 Note: This method is only for geometry projects.

 Example usage:

 % Flip the first polygon in the

 % array of polygons.

 Project.flipPolygonY(1)

 generateUniqueId Generate a unique debugId

 Id=Project.generateUniqueId() will very quickly find a

 debugId that is not being used by any other

 polygons in the project. Values are not sequential

 but are found quickly even with a large number

 of polygons.

Method Reference

Version 4.0

 If the project has no polygons a debugId of one

 is always returned.

 This method is useful when manually creating polygons

 or when wanting to make sure that cloned polygons

 have unique debugId values.

 Note: This method is only for geometry projects.

 See also SonnetProject/assignUniqueDebugId,

 SonnetProject/generateUniqueId

 getAllPolygonCentroids Generates vectors for centroids and references

 [X Y Layers Sizes Polygons]=Project.getAllPolygonCentroids() will

 return a vector of all of the centroid X coordinates, the

 centroid Y coordinates, the layers, the sizes and polygon

 handles for all the polygons in a project.

 Note: This method is only for geometry projects.

 See also SonnetProject/findPolygonIndex

 getAllPolygonIds Generates vectors of IDs and references

 [IDs Polygons]=Project.getAllPolygonIds() will return a vector of all of the

 polygon ID's in a project and a cell array of a reference

 to each polygon such that IDs(n) is the ID for Polygons(n).

 Note: This method is only for geometry projects.

 See also SonnetProject/findPolygonIndex

 getAllPolygonMeans Generates vectors for means and references

 [X Y Layers Sizes Polygons]=Project.getAllPolygonMeans() will

 return a vector of all of the mean X coordinates, the

 mean Y coordinates, the layers, the sizes and polygon

 handles for all the polygons in a project.

 Note: This method is only for geometry projects.

 See also SonnetProject/findPolygonIndex

 getAllPolygonIds Generates vectors for coordinates and references

 [X Y Layers Sizes Polygons]=Project.getAllPolygonPoints() will

 return arrays of all of the polygon X coordinates and

 the polygon Y coordinates.

 Note: This method is only for geometry projects.

 See also SonnetProject/findPolygonIndex

 getCapacitorComponents Returns capacitor components

 components=Project.getCapacitorComponents() searches

 for capacitor components and returns a vector of

 component references.

Method Reference

Version 4.0

 Note: This method is only for geometry projects.

 Example usage:

 components=Project.getCapacitorComponents()

 length(components) % The number of returned components

 getComponent Returns a component in the project

 aComponent=Project.getComponent(N) will return the Nth component

 in the array of components.

 aComponent=Project.getComponent() will return the last component

 in the array of components.

 This operation can also be achieved with

 component=Project.GeometryBlock.ArrayOfComponents{N};

 Note: This method is only for geometry projects.

 Example usage:

 % Get the 5th component in the array of components

 component=Project.getComponent(5);

 addDataFileComponent Returns data file components

 components=Project.getDataFileComponents() searches

 for data file components and returns a vector of

 component references.

 Note: This method is only for geometry projects.

 Example usage:

 components=Project.getDataFileComponents()

 length(components) % The number of returned components

 getInductorComponents Returns inductor components

 components=Project.getInductorComponents() searches

 for inductor components and returns a vector of

 component references.

 Note: This method is only for geometry projects.

 Example usage:

 components=Project.getInductorComponents()

 length(components) % The number of returned components

 getLayer Returns polygon in the project

 layer=Project.getLayer(N) will return the Nth

 dielectric layer in the array of

 dielectric layers.

 This operation can also be achieved with

 layer=Project.GeometryBlock.SonnetBox.ArrayOfDielectricLayers{N};

 Note: This method is only for geometry projects.

Method Reference

Version 4.0

 Example usage:

 % Get the 2nd dielectric layer in the project

 layer=Project.getLayer(2);

 getLayerIndexes Returns the list of dielectric layer names

 aValue=Project.getLayerIndexes() returns a vertically

 concatinated vector of layer indexes. If the project

 has thick metal types the sublevels will be included.

 This method is useful for determining the indexes

 of levels (and sublevels defined by thick metal

 types) for JXY data exporting.

 Note: This method is only for geometry projects.

 Note: This method is only supported on Sonnet version 13

 Note: This method will perform a save operation. If the

 project does not yet have an associated filename

 the save will not be successful.

 Example:

 % Export level numbers from a project

 % with a defined thick metal type.

 Project.getLayerIndexes()

 getNetworkElements Returns network in a project

 aNetwork=Project.getNetworkElements(N) will return a cell

 array of all the circuit elements in the

 Nth network of a netlist.

 Note: This method is only for netlist projects.

 Example usage:

 % Get the 5th network in a netlist

 network=Project.getNetworkElements(5);

 getPolygon Returns polygon in the project

 aPolygon=Project.getPolygon(N) will return the Nth polygon

 in the array of polygons.

 aPolygon=Project.getPolygon() will return the last polygon

 in the array of polygons.

 This operation can also be achieved with

 polygon=Project.GeometryBlock.ArrayOfPolygons{N};

 Note: This method is only for geometry projects.

 Example usage:

 % Get the 5th polygon in the array of polygons

 polygon=Project.getPolygon(5);

 getResistorComponents Returns resistor components

 components=Project.getResistorComponents() searches

Method Reference

Version 4.0

 for resistor components and returns a vector of

 component references.

 Note: This method is only for geometry projects.

 Example usage:

 components=Project.getResistorComponents()

 length(components) % The number of returned components

 getVariableValue Returns the value of a variable

 aValue=Project.getVariableValue(name) returns

 the value of the variable specified by name.

 if the variable does not exist [] is returned.

 This method supports both geometry and netlist

 variables.

 initialize Initializes a Sonnet geometry project

 Project.Initialize() initializes a project to default

 values for a Sonnet geometry project.

 See also SonnetProject/initializeNetlist,

 SonnetProject/initializeGeometry

 initializeGeometry Initializes a Sonnet geometry project

 Project.initializeGeometry() initializes a project to the

 default values for a Sonnet geometry project.

 See also SonnetProject/initialize,

 SonnetProject/initializeNetlist

 initializeNetlist Initializes a Sonnet netlist project

 Project.initializeNetlist() initializes a project

 to the default values for a Sonnet netlist project.

 See also SonnetProject/initialize,

 SonnetProject/initializeGeometry

 isGeometryProject Checks project type

 Boolean=Project.isGeometryProject returns true if the

 project is a geometry project; it returns

 false if it is a netlist project.

 Example usage:

 if Project.isGeometryProject()

 end

 See also SonnetProject/isNetlistProject

 isNetlistProject Checks project type

 Boolean=Project.isNetlistProject returns true if the

 project is a netlist project; it returns

Method Reference

Version 4.0

 false if it is a geometry project.

 Example usage:

 if Project.isNetlistProject()

 end

 See also SonnetProject/isNetlistProject

 modifyVariableValue Modify Geometry/Netlist Variable Value

 Project.modifyVariableValue(Name,Value) When used with

 a geometry project will modify the value for the geometry

 variable with the passed name. If there are

 any parameters associated with the variable then the

 parameter's values will be updated to be consistent. If

 Project is a netlist project then the value for the

 netlist variable will be modified.

 If the user supplies the name for an invalid variable name then no

 action will take place. The name of the variable is

 case insensitive.

 Example usage:

 Project.modifyVariableValue('Length',1)

 movePolygon Moves a polygon to a new X and Y location

 Project.movePolygon(polygon,X,Y) will move a polygon such that its centroid

 will be at the desired location.

 Project.movePolygon(polygon,X,Y) will move the passed

 polygon such that its centroid will be at the desired location.

 Note: This method is only for geometry projects.

 Example usage:

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygon(polygon,0,0);

 % Move the polygon with debug ID 12

 % such that its centroid is at location (0,0)

 Project.movePolygon(12,0,0);

 See also SonnetProject/movePolygonExact, SonnetProject/movePolygonRelative

 movePolygonExact Moves a polygon to a new X and Y location

 Project.movePolygonExact(Polygon,X,Y) will move

 a polygon such that its centroid will be at the

 desired location.

 Project.movePolygonExact(ID,X,Y) will move a

 polygon such that its centroid will be at the

 desired location.

 Note: This method is only for geometry projects.

 Example usage:

Method Reference

Version 4.0

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonExact(polygon,0,0);

 % Move the polygon with debug ID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonExact(12,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonRelative

 movePolygonExactUsingId Moves a polygon to a new X and Y location

 Project.movePolygonExactUsingId(ID,X,Y) will move a

 polygon such that its centroid will be at the

 desired location.

 Project.movePolygonExactUsingId(Polygon,X,Y) will move

 the passed polygon such that its centroid will be at

 the desired location.

 Note: This method is only for geometry projects.

 Example usage:

 % Move the polygon with debug ID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonExactUsingId(12,0,0);

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonExactUsingId(polygon,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonRelative

 movePolygonExactUsingIndex Moves a polygon to a new X and Y location

 Project.movePolygonExactUsingIndex(N,X,Y) will move

 the Nth polygon in the array of polygons such that

 its centroid will be at the desired location.

 Project.movePolygonExactUsingIndex(Polygon,X,Y) will move

 the passed polygon such that its centroid will be at

 the desired location.

 Note: This method is only for geometry projects.

 Example usage:

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonExactUsingIndex(polygon,0,0);

 % Move the polygon with debug ID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonExactUsingIndex(12,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonRelative

 movePolygonRelative Moves a polygon by a particular amount

Method Reference

Version 4.0

 Project.movePolygonRelative(Polygon,X,Y) will move a

 polygon such that its centroid X value will be moved

 by the specified distance for the X direction and

 the centroid Y value will be moved by the specified

 distance in the Y direction.

 Project.movePolygonRelative(ID,X,Y) will move the polygon

 with the passed ID such that its centroid X value will be

 moved by the specified distance for the X direction

 and the centroid Y value will be moved by the specified

 distance in the Y direction.

 Note: This method is only for geometry projects.

 Example usage:

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonRelative(polygon,0,0);

 % Move the polygon with debugID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonRelative(12,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonExact

 movePolygonRelativeUsingId Moves a polygon by a particular amount

 Project.movePolygonRelativeUsingId(ID,X,Y) will move the polygon

 with the passed ID such that its centroid X value will be

 moved by the specified distance for the X direction

 and the centroid Y value will be moved by the specified

 distance in the Y direction.

 Project.movePolygonRelativeUsingId(Polygon,X,Y) will move a

 polygon such that its centroid X value will be moved

 by the specified distance for the X direction and

 the centroid Y value will be moved by the specified

 distance in the Y direction.

 Note: This method is only for geometry projects.

 Example usage:

 % Move the polygon with debugID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonRelative(12,0,0);

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonRelative(polygon,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonExact

 movePolygonRelativeUsingIndex Moves a polygon by a particular amount

 Project.movePolygonRelativeUsingId(N,X,Y) will move the Nth polygon

 in the array of polygons such that its centroid X value will be

 moved by the specified distance for the X direction

 and the centroid Y value will be moved by the specified

 distance in the Y direction.

Method Reference

Version 4.0

 Project.movePolygonRelativeUsingId(Polygon,X,Y) will move a

 polygon such that its centroid X value will be moved

 by the specified distance for the X direction and

 the centroid Y value will be moved by the specified

 distance in the Y direction.

 Note: This method is only for geometry projects.

 Example usage:

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonRelativeUsingIndex(polygon,0,0);

 % Move the polygon with debugID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonRelativeUsingIndex(12,0,0);

 See also SonnetProject/movePolygon, SonnetProject/movePolygonExact

 movePolygon Moves a polygon to a new X and Y location

 Project.movePolygonUsingId(ID,X,Y) will move the polygon specified

 by the passed ID value such that its centroid will be at the

 desired location.

 Project.movePolygonUsingId(polygon,X,Y) will move the passed

 polygon such that its centroid will be at the desired location.

 Note: This method is only for geometry projects.

 Example usage:

 % Move the polygon with debug ID 12

 % such that its centroid is at location (0,0)

 Project.movePolygonUsingId(12,0,0);

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonUsingId(polygon,0,0);

 See also SonnetProject/movePolygonExact, SonnetProject/movePolygonRelative

 movePolygon Moves a polygon to a new X and Y location

 Project.movePolygonUsingIndex(N,X,Y) will move the Nth polygon

 in the array of polygons such that its centroid will be at

 the desired location.

 Project.movePolygonUsingIndex(polygon,X,Y) will move the passed

 polygon such that its centroid will be at the desired location.

 Note: This method is only for geometry projects.

 Example usage:

 % Move a particular polygon such that

 % its centroid is at location (0,0)

 Project.movePolygonUsingIndex(polygon,0,0);

 % Move the polygon with index 3

 % such that its centroid is at location (0,0)

Method Reference

Version 4.0

 Project.movePolygonUsingIndex(3,0,0);

 See also SonnetProject/movePolygonExact, SonnetProject/movePolygonRelative

 openInGui Opens a project in the Matlab GUI

 Project.openInGui() saves the project and opens it in the GUI

 bundled with this interface. The user may edit the project in

 the GUI interface as much as they like. Once the user

 is done they can close the GUI interface and the project

 will re-update to reflect the changes made by the GUI.

 openInGui(Boolean) takes an argument to specify

 whether or not execution of the function should

 halt when the GUI window is open. If the argument is

 a Boolean true the function will operate under its normal

 behavior and launch the GUI, wait for the GUI to be

 closed and update the changes to the project. If the

 argument is a Boolean false the GUI window will be

 launched but the execution state will continue and

 the project changes will not be saved to the

 Sonnet project object that exists in memory (although

 changes may be saved to the version that exists on

 the hard drive if the save button in the GUI is pressed).

 Note: This method is only for geometry projects.

 Note: This method requires that the optional Matlab

 GUI be included in Matlab's path. The Matlab

 GUI is available from the Matlab Central File

 Exchange.

 Example usage:

 % Open the GUI and wait for GUI to be closed and

 % update the project settings.

 aSonnetProject.openInGui();

 % Or

 aSonnetProject.openInGui(true);

 % Open the GUI and do not wait for GUI to be closed.

 % and project settings will not be updated in Matlab.

 aSonnetProject.openInGui(false);

 See also SonnetProject/openInSonnet

 openInSonnet Opens a project in the Sonnet GUI

 Project.openInSonnet() saves the project and opens it in Sonnet. The

 user can then edit the project in Sonnet. Once the user

 is done they can close Sonnet and the version of the project

 that exists in Matlab will be updated to reflect the changes

 made in Sonnet.

 openInSonnet(Boolean) takes an argument to specify

 whether or not execution of the function should

 halt when the Sonnet window is open. If the argument is

 a Boolean true the function will operate under its normal

 behavior and launch Sonnet, wait for Sonnet to be

 closed and update the changes to the project. If the

 argument is a Boolean false the Sonnet window will be

 launched but the execution state will continue and

 the project changes will not be saved to the

Method Reference

Version 4.0

 Sonnet project object that exists in memory (although

 changes may be saved to the version that exists on

 the hard drive if the save button in the Sonnet is pressed).

 openInSonnet(Boolean,Path) takes an argument to specify

 whether or not execution of the function should

 halt when the Sonnet window is open. If the argument is

 a Boolean true the function will operate under its normal

 behavior and launch Sonnet, wait for Sonnet to be

 closed and update the changes to the project. If the

 argument is a Boolean false the Sonnet window will be

 launched but the execution state will continue and

 the project changes will not be saved to the

 Sonnet project object that exists in memory (although

 changes may be saved to the version that exists on

 the hard drive if the save button in the Sonnet is pressed).

 The Path value specifies the directory which has the

 version of Sonnet that should be used.

 Example usage:

 % Opens the project with Sonnet and waits for Sonnet to be

 % closed. The project's settings will not be updated in Matlab.

 aSonnetProject.openInSonnet();

 % Or

 aSonnetProject.openInSonnet(true);

 % Opens the project with Sonnet and does not wait for Sonnet to be

 % closed. The project's settings will not be updated in Matlab.

 aSonnetProject.openInSonnet(false);

 % Opens the project with Sonnet version 12.52. This call will not

 % wait for Sonnet to be closed and the project's settings will not

 % be updated in Matlab.

 aSonnetProject.openInSonnet(false,'C:\Program Files\sonnet.12.52');

 See also SonnetProject/openInGui

 polygonCount Counts project's polygons

 n=Project.polygonCount() Will return the number of

 polygons in the project.

 This operation can also be achieved with

 length(Project.GeometryBlock.ArrayOfPolygons)

 Note: This method is only for geometry projects.

 Example usage:

 % Get the number of polygons

 n=Project.polygonCount();

 quickClone Initializes a replica project

 newProject=Project.quickClone() will return a deep

 copy of a Sonnet project. The copy will have all the

 same values for the class properties but will contain

 completely separate handles.

 The new project will have no filename associated

 with it but it may be saved with the saveAs()

Method Reference

Version 4.0

 command.

 This method is typically much faster than clone()

 but requires a disk operation.

 Example usage:

 % Create a new Sonnet project object

 Project1=SonnetProject('project.son');

 % Clone the project

 Project2=Project1.quickClone();

 % Any modifications made to Project1

 % or Project2 will not affect the

 % other project.

 See also SonnetProject/clone

 removeAllDielectricBricks Removes all bricks

 Project.removeAllDielectricBricks() will look through the

 array of polygons and delete any dielectric brick polygons.

 Note: This method is only for geometry projects.

 This function is useful if you are using dielectric

 bricks as a placeholder for objects.

 replaceDielectricLayer Replace an existing dielectric layer

 Project.replaceDielectricLayer(...) will replace an existing

 dielectric layer in the stackup.

 There are two ways to use replaceDielectricLayer. The user

 may define a layer using a set of custom options or

 the user may define a using a predefined property set

 from the Sonnet library.

 Users may use replaceDielectricLayer to replace a layer with an isotropic dielectric

 layer in the project using the following parameters:

 1) The array position for the layer to be replaced

 2) Name Of the Dielectric Layer

 3) Thickness of the layer

 4) Relative Dielectric Constant

 5) Relative Magnetic Permeability

 6) Dielectric Loss Tangent

 7) Magnetic Loss Tangent

 8) Dielectric Conductivity

 The user may also complete the same operation with an anisotropic

 layer by using the following parameters:

 1) The array position for the layer to be replaced

 2) Name Of the Dielectric Layer

 3) Thickness of the layer

 4) Relative Dielectric Constant

 5) Relative Magnetic Permeability

 6) Dielectric Loss Tangent

 7) Magnetic Loss Tangent

 8) Dielectric Conductivity

 9) Relative Dielectric Constant For Z Direction

 10) Relative Magnetic Permeability For Z Direction

Method Reference

Version 4.0

 11) Dielectric Loss Tangent For Z Direction

 12) Magnetic Loss Tangent For Z Direction

 13) Dielectric Conductivity For Z Direction

 Users may replace an existing layer with one based

 on an entry from the Sonnet library by using the

 following parameters:

 1) The array position for the layer to be replaced

 2) The name of the material (Ex: "Rogers RT6006")

 3) Thickness of the layer

 If no dielectric layer exists in the SonnetLibrary

 with the specified name then an error will be thrown.

 Note: This method is only for geometry projects.

 Example usage:

 % Replace the second dielectric layer with a layer which

 % is 10 units thick, has a relative dielectric constant

 % of 1, a relative magnetic permeability of 1,

 % a dielectric loss tangent of 0, a magnetic loss

 % tangent of 0, an dielectric conductivity of 0.

 Project.replaceDielectricLayer(2,'newLayer',10,1,1,0,0,0);

 % Replace the third layer of the project with an anisotropic

 % dielectric layer. The new layer is 10 units thick, has a

 % relative dielectric constant of 1, a relative magnetic

 % permeability of 1, a dielectric loss tangent of 0, a

 % magnetic loss tangent of 0, an dielectric conductivity of 0.

 % The Z direction has a relative dielectric constant

 % of 1, a dielectric loss tangent of 1, a magnetic

 % loss tangent of 0, and an dielectric conductivity of 0.

 Project.replaceDielectricLayer(3,'newLayer',10,1,1,0,0,0,1,1,0,0,0);

 % Replace the first layer's material with Rogers RT6006

 Project.replaceDielectricLayer(1,'Rogers RT6006',50);

 See also SonnetProject/addAnisotropicDielectricLayer

 returnSelectedFrequencySweep Returns a reference to the selected frequency sweep

 [sweep index]=Project.returnSelectedFrequencySweep() will

 return a handle to the object for the selected

 frequency sweep and its location in the

 array of frequency sweeps.

 If the frequency sweep type was combination

 then the return values will be a cell array of

 frequency sweep objects and a vector of list

 indices.

 This function cannot be used when the selected

 frequency sweep is parameter sweep, optimize or

 external file.

 save Saves a project to the hard drive

 Project.save() writes the project to a file.

 The file will be saved to the same filename

 as was used by the most recent call to saveAs. If

 saveAs has never been called it will use the name of

 the file that was originally opened by SonnetProject.

Method Reference

Version 4.0

 If the project was made from scratch and has never

 been saved with savesAs then an error will be thrown.

 Example usage:

 Project.save();

 See also SonnetProject/saveAs

 saveAs Saves a project to the hard drive

 Project.saveAs(Filename) writes the Sonnet project to a

 file. The filename argument is required.

 This function will change the internal filename

 property for the project such that future calls to save() will

 save to this filename rather than the original filename.

 Example usage:

 % Save the project as 'project.son'

 Project.saveAs('project.son');

 See also SonnetProject/save

 scalePolygon Expands polygons

 Project.scalePolygon(Polygon,XChange,YChange) will

 increase the size of a polygon by multiplying all of its coordinates

 by the specified X change factor and Y change factor. The polygon

 is scaled from its centroid so the polygon's position does not change.

 Project.scalePolygon(ID,XChange,YChange) will increase

 the size of the polygon with the passed ID by multiplying all of

 its coordinates by the specified X change factor and Y change factor.

 The polygon is scaled from its centroid so the polygon's position does

 not change.

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygon(polygon,2,2);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygon(12,2,2);

 See also SonnetProject/scalePolygonFromPoint

 scalePolygonFromPoint Expands polygons

 scalePolygonFromPoint(Polygon,X,Y) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPoint(Polygon,X,Y,PX,PY) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the coordinate location (PX,PY).

Method Reference

Version 4.0

 scalePolygonFromPoint(ID,X,Y) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPoint(ID,X,Y,PX,PY) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the coordinate location (PX,PY).

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPoint(polygon,2,2,0,0);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPoint(12,2,2,0,0);

 See also SonnetProject/scalePolygon

 scalePolygonFromPointUsingId Expands polygons

 scalePolygonFromPointUsingId(ID,X,Y) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPointUsingId(ID,X,Y,PX,PY) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the coordinate location (PX,PY).

 scalePolygonFromPointUsingId(Polygon,X,Y) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPointUsingId(Polygon,X,Y,PX,PY) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the coordinate location (PX,PY).

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPointUsingId(polygon,2,2,0,0);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPointUsingId(12,2,2,0,0);

 See also SonnetProject/scalePolygon

Method Reference

Version 4.0

 scalePolygonFromPointUsingIndex Expands polygons

 scalePolygonFromPointUsingIndex(N,X,Y) will increase the size

 of the Nth polygon in the array of polygons by scaling

 the polygon by factors in the X and Y directions with

 respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPointUsingIndex(N,X,Y,PX,PY) will increase the size

 of the Nth polygon in the array of polygons by scaling the

 polygon by factors in the X and Y directions with respect

 to the coordinate location (PX,PY).

 scalePolygonFromPointUsingIndex(Polygon,X,Y) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the centroid. This provides the

 same functionality as scalePolygon().

 scalePolygonFromPointUsingIndex(Polygon,X,Y,PX,PY) will increase the size

 of a polygon by scaling the polygon by factors in the X and Y

 directions with respect to the coordinate location (PX,PY).

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPointUsingIndex(polygon,2,2,0,0);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 % with respect to the point (0,0)

 Project.scalePolygonFromPointUsingIndex(12,2,2,0,0);

 See also SonnetProject/scalePolygon

 scalePolygonUsingId Expands polygons

 Project.scalePolygonUsingId(ID,XChange,YChange) will increase

 the size of the polygon with the passed ID by multiplying all of

 its coordinates by the specified X change factor and Y change factor.

 The polygon is scaled from its centroid so the polygon's position does

 not change.

 Project.scalePolygonUsingId(Polygon,XChange,YChange) will

 increase the size of a polygon by multiplying all of its coordinates

 by the specified X change factor and Y change factor. The polygon

 is scaled from its centroid so the polygon's position does not change.

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygonUsingId(12,2,2);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygonUsingId(polygon,2,2);

 See also SonnetProject/scalePolygonFromPoint

Method Reference

Version 4.0

 scalePolygonUsingIndex Expands polygons

 Project.scalePolygonUsingIndex(N,XChange,YChange) will increase

 the size of the Nth polygon in the array of polygons by multiplying all of

 its coordinates by the specified X change factor and Y change factor.

 The polygon is scaled from its centroid so the polygon's position does

 not change.

 Project.scalePolygonUsingIndex(Polygon,XChange,YChange) will

 increase the size of a polygon by multiplying all of its coordinates

 by the specified X change factor and Y change factor. The polygon

 is scaled from its centroid so the polygon's position does not change.

 Note: This method is only for geometry projects.

 Example usage:

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygonUsingIndex(polygon,2,2);

 % Scale a particular polygon such that

 % it is twice as large in the X and Y directions

 Project.scalePolygonUsingIndex(12,2,2);

 See also SonnetProject/scalePolygonFromPoint

 setNetworkPorts Sets the ports for a network

 Project.setNetworkPorts(N,[1 2 3 ...]) will modify the

 ports for the Nth network in the project to be the

 numbers specified in the second argument.

 Project.setNetworkPorts([1 2 3 ...]) will modify the

 ports for the last network in the project to be the

 numbers specified in the second argument. The last

 network in a project is the main network and

 specifies the external ports.

 Note: This method is only for netlist projects.

 Example usage:

 % Modify the ports for the fifth

 % network to be one through five.

 Project.setNetworkPorts(5,[1 2 3 4 5]);

 % Modify the ports for the last

 % network to be one through ten.

 Project.setNetworkPorts(1:10);

 simulate Simulates Sonnet projects

 [success message]=Project.simulate() saves the project and calls

 Sonnet em to simulate the Sonnet Project File. If the simulation

 is successful then 'success' will be true; otherwise it

 will be false. Error messages returned from em will

 be stored in 'message'.

 [success message]=Project.simulate(Options) saves the project and

Method Reference

Version 4.0

 calls Sonnet em to simulate the project with some particular options

 as defined below. If the simulation is successful then 'success' will

 be true; otherwise it will be false. Error messages returned from em

 will be stored in 'message'.

 Options are passed as a single

 string. Order of option switches does not

 matter and unknown option switches are

 ignored.

 Supported option switches:

 '-c' To clean the project data first

 '-x' To not clean the project data first (default)

 '-w' To display a simulation status window (default)

 '-t' To not display a simulation status window

 '-r' To run the simulation instantaneously (default)

 '-p' To not run the simulation instantaneously (requires status

window)

 '-v' <VERSION> To use a particular version of Sonnet to do the simulation

 '-s' <DIRECTORY> To manually specify the Sonnet directory to

 use for the simulation. The directory may either

 be the base Sonnet directory or the version's bin

 directory.

 Note: This method will save the project to the hard drive. If

 there hasn't been a filename associated with this project

 an error will be thrown. A filename may be specified using

 the saveAs method (see "help SonnetProject.saveAs")

 Example usage:

 % The project is written to a file and

 % simulated using the GUI status window

 aSonnetProject.simulate();

 % The project is written to a file and

 % simulated without displaying the status window

 aSonnetProject.simulate('-t');

 % The project is written to a file, cleaned

 % and then simulated without a GUI status window

 aSonnetProject.simulate('-t -c');

 % The project is simulated using the version of Sonnet

 % that exists in the specified location.

 aSonnetProject.simulate('-s C:\Program Files\sonnet.12.56');

 See also SonnetProject/estimateMemoryUsage, SonnetProject/viewResponseData,

 SonnetProject/viewCurrents

 snapPolygonsToGrid Snaps polygons to the grid

 Project.snapPolygonsToGrid() will snap all the

 polygons in a project to the grid in both the

 X and Y directions.

 Project.snapPolygonsToGrid(axis) will snap all

 polygons to the grid in the direction(s) specified

 by axis. snapPolygonsToGrid(axis) will call the

 appropriate snap method to either snap to the X

 axis, the Y axis or both.

 The user can specify the axis with one of the following strings:

Method Reference

Version 4.0

 'x' or 'X' for the X direction

 'Y' or 'Y' for the X direction

 'xy' or 'XY' for the X and Y directions

 If an invalid axis string is supplied an 'XY' snap will be performed.

 Note: This method is only for geometry projects.

 Example usage:

 % Snap polygons in the X direction

 Project.snapPolygonsToGrid('x');

 % Snap polygons in the X and Y directions

 Project.snapPolygonsToGrid();

 % or

 Project.snapPolygonsToGrid('XY');

 stringSignature Returns the project file as a string

 string=Project.stringSignature() returns a string which would

 contain all the information that would normally

 be present when saving a project to the disk.

 Example usage:

 aString=Project.stringSignature();

 See also SonnetProject/save

 viewCurrents Launches current viewer

 Project.viewCurrents() will call Sonnet's built in

 current density viewer application to view the currents

 for the project. The project must have had the compute

 current setting on in order for the currents to have been

 calculated while simulating. This can be enabled using

 the 'enableCurrentCalculations()' function.

 Project.viewCurrents(Path) will call Sonnet's built in

 current density viewer application to view the currents

 for the project. The method will use the version of Sonnet

 located at the specified directory.The project must have

 had the compute current setting on in order for the currents

 to have been calculated while simulating. This can be

 enabled using the 'enableCurrentCalculations()' function.

 Note: This method is only for geometry projects.

 Example:

 % View currents using the default version of Sonnet

 viewCurrents();

 % View currents using a particular version of Sonnet

 viewCurrents('C:\Program Files\sonnet.12.52')

 See also SonnetProject/viewResponseData,

 SonnetProject/enableCurrentCalculations,

 SonnetProject/disableCurrentCalculations

 viewResponseData Launches emgraph

Method Reference

Version 4.0

 Project.viewResponseData() will open the project's response data

 using Sonnet's built in response analysis tool emgraph.

 The project must be simulated before viewing response files.

 Project.viewResponseData(Path) will open the project's response data

 using Sonnet's built in response analysis tool emgraph. The method

 will use the version of Sonnet located at the specified directory.

 The project must be simulated before viewing response files.

 Example:

 % View response using the default version of Sonnet

 viewResponseData();

 % View response using a particular version of Sonnet

 viewResponseData('C:\Program Files\sonnet.12.52')

 xBoxSize Return box size for X direction

 BoxSize=Project.xBoxSize() returns the total width of the Sonnet box.

 The Sonnet box is the rectangular area that represents the

 boundaries for a circuit.

 Note: This method is only for geometry projects.

 Example usage:

 % get the cell size in the X direction

 number=Project.xBoxSize();

 See also SonnetProject/xCellSize, SonnetProject/yCellSize

 SonnetProject/yBoxSize

 xCellSize Return cell size for X direction

 CellSize=Project.xCellSize() determines the width of each cell in the grid.

 The grid is clearly visible in the Sonnet GUI. Polygons

 edges are typically along grid lines.

 Note: This method is only for geometry projects.

 Example usage:

 % get the cell size in the X direction

 number=Project.xCellSize();

 See also SonnetProject/yCellSize, SonnetProject/xBoxSize

 SonnetProject/yBoxSize

 yBoxSize Return box size for Y direction

 BoxSize=Project.yBoxSize() returns the total height of the Sonnet box.

 The Sonnet box is the rectangular area that represents the

 boundaries for a circuit.

 Note: This method is only for geometry projects.

 Example usage:

 % get the cell size in the Y direction

 number=Project.yBoxSize();

Method Reference

Version 4.0

 See also SonnetProject/xCellSize, SonnetProject/yCellSize

 SonnetProject/yBoxSize

 yCellSize Return cell size for Y direction

 CellSize=Project.yCellSize() determines the height of each cell in the grid.

 The grid is clearly visible in the Sonnet GUI. Polygons

 edges are typically along grid lines.

 Note: This method is only for geometry projects.

 Example usage:

 % get the cell size in the Y direction

 number=Project.yCellSize();

 See also SonnetProject/xCellSize, SonnetProject/xBoxSize

 SonnetProject/yBoxSize

Contact

Your feedback is important to us. If you have any questions or comments about SonnetLab, please

contact Sonnet Support by email at support@sonnetsoftware.com.

Please make sure you are using the most up to date version of SonnetLab before submitting a bug

report. When submitting a bug report please include the Sonnet project file that generated the error

(Sonnet project files have the extension .son). The more information that that we receive the faster

it will be for us to resolve the issue and contact you back.

mailto:support@sonnetsoftware.com

