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Abstract—The unified fast Fourier transform (UFFT) method-
ology is proposed for fast method of moments analysis of dense
integrated circuits embedded in layered media inside perfectly
electric conducting or perfectly magnetic conducting enclosures
of rectangular cross section. The pre-corrected fast Fourier trans-
form (FFT) method is modified to handle the dyadic Green’s
function (DGF) of shielded layered media through factorization
of the DGF into four convolution/correlation terms enabling fast
matrix solve operations (MSOs). Calculation of the impedance
matrix elements in the form of an infinite series of waveguide
modes is cast into the form of a 2-D discrete Fourier transform
allowing for fast FFT-accelerated matrix fill operations (MFOs).
Fast FFT-enhanced MSOs and MFOs used in conjunction form
the UFFT method. The computational complexity and memory
requirements for the proposed UFFT solver scale as
and , respectively, where is the number of unknowns
in the discrete approximation of the governing integral equation.
New criteria specific to shielded circuits for the projection of the
current expansion functions on a uniform FFT grid are developed.
The accuracy and efficiency of the solver is demonstrated through
its application to multiple examples of full-wave analysis of large
planar circuits.

Index Terms—Computer-aided design (CAD), CAD algorithms
and techniques, fast algorithms, numerical analysis, RF integrated
circuit (RFIC) modeling.

I. INTRODUCTION

D ENSE PLANAR and quasi-planar integrated circuits
(ICs) are becoming common in the development of

multi-layered packages and substrates for the realization of
compact system-in-package (SIP) and system-on-chip (SOC)
multi-function designs. The interconnect density in multi-lay-
ered substrates for such systems is high such that the number of
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unknowns, , in the matrix approximation of the electromag-
netic equations for these problems is on the order of hundreds
of thousands or more. While simple and reliable, full matrix
inverse solution of these dense matrices is computationally
prohibitive. Further, while application of iterative conjugate
gradient (CG) [1] methods reduces processing requirements,
the dense nature of the method of moments (MoM) matrix
results in memory and operations that unfortunately both scale
as .
To address complexity and establish a computationally effi-

cient approach to electromagnetic characterization of high-den-
sity and/or electrically large planar circuits, there have been
several classes of fast algorithms developed over the last two
decades. Among these methods are kernel dependent iterative
fast methods, such as the multi-level fast multipole algorithm
(MLFMA) [2], [3], pre-corrected fast Fourier transform (PFFT)
algorithm (also known as the adaptive integral method (AIM)
[4]–[10]), which notably allows for off-grid discretization,
conjugate gradient fast Fourier transform (CG-FFT) algorithm
[11]–[14] which must conform to a grid, integral equation fast
Fourier transform (IE-FFT) method [15], sparse-matrix/canon-
ical grid (SM/CG) method [16], and kernel-independent
algorithms, such as iterative QR- and SVD-based compression
techniques [17]–[19], iterative [20], [21] and direct [22] -ma-
trix based methods, iterative adaptive-cross-approximation
method [23], [24], and iterative wavelet-based compression
method [25]. Though the latter group of kernel-independent
algorithms can be applied to acceleration of MoM solutions in
conjunction with complex dyadic Green’s functions (DGFs)
of layered media and/or perfect enclosures, special implemen-
tations are required to produce sufficient accuracy of results
[26]. Conversely, full-wave algorithms, such as the MLFMA,
PFFT, and CG-FFT, which natively retain both accuracy and
efficiency in capturing full-wave physics, require significant
and rarely implemented modification for complex media. The
MLFMA has been extended to handle full-wave layered kernels
in its modification, fast inhomogeneous plane-wave algorithm
[27], [28]; however, it does not rigorously demonstrate rig-
orous error control beyond two to three significant figures. The
MLFMA has also been extended for the case of static layered
kernels [29], [30], and rectangular enclosures in the absence of
layered media [31].
In the class of fast Fourier transform (FFT)-based algorithms,

several modifications of the algorithm have been developed for
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unshielded layered media [32]–[36]. The attempt of general-
izing the PFFT method to the case of shielded stratified media
has been made [37]. This method, however, fell short of ex-
pectations due to the large computational complexity associ-
ated with matrix fill operations (MFOs) with only moderate
size problems having been analyzed. Issues in [37] are reme-
died in this work through application of a previously unpub-
lished FFT-enhanced algorithm for MFO developed by Rautio
and implemented for rapid MFO in Sonnet em [38]. This MFO
algorithm is shown to scale as . Additionally, the
previously developed PFFT generalization for shielded strati-
fied media [37] has been further advanced through introduction
of a more accurate method for basis function projection onto the
FFT grid utilizing waveguide mode matching instead of stan-
dard multipole reproduction criteria [5]. The PFFT algorithm
for fast handling of the matrix solve operations (MSOs) has also
been generalized to the handling of both perfectly electric con-
ducting (PEC) and mixed PEC/perfectly magnetic conducting
(PMC) types of enclosures. As MFO andMSO are the two main
time-consuming operations in the MoM solution of the electric
field integral equation (EFIE), the novel use of FFT-accelerated
versions of both in conjunction creates the unified fast Fourier
transform (UFFT) methodology for the expedient MoM solu-
tion of planar electromagnetic analysis in the shielded layered
environment. This work identifies, develops, tests, and shows
the meaningful relationship between the two existing FFT-en-
hanced operations. Moreover, the FFT enhanced MFO in [38]
is detailed for the first time.
For clarity, it should be explained that this is expressly a

3-D planar solver as opposed to an arbitrary 3-D solver. It
accepts limitation of simulation capability to predominantly
planar structures, such as those printed on printed circuit boards
(PCBs) and ICs, in exchange for more efficient meshing of the
structure. Note that while this generally reduces the number of
unknowns significantly, it does not reduce the complexity of
the algorithm per unknown.

II. EFIE AND ITS MOM DISCRETIZATION

Well-known MoM techniques discretizing the EFIE [1] lead
to the following matrix equation:

(1)

where the vector is the solution and the matrix and right-hand-
side elements are given by

(2)

The shorthand notation is used to denote the matrix-
vector product of (1). For large or dense circuits with unknowns
on the order of tens of thousands or more, iterative methods

(e.g., CG) are needed to avoid complexity in solving
(1) via LU decomposition [39]. The computational complexity
of such methods is dominated by the operations of the
matrix-vector product at each iteration. Thememory storage
also scales as as the dense matrix must be calculated
explicitly and stored. The objective of the UFFT method is to
further reduce CPU scaling from to and
memory from to . Similar to other fast algorithms,
the UFFT addresses this complexity by splitting into “near-
zone” interactions and “far-zone” interactions. This split may be
written in the form

(3)

where denotes impedance matrix elements from the projected
geometry without pre-correction, and denotes pre-correction
and pre-corrected matrix elements. contains the inter-
actions between closely spaced elements, separated by distances
less than some threshold distance. These interactions are calcu-
lated using the standard integrals (2) resulting from the MoM
process. Even though the matrix is sparse and the com-
putational complexity of is , the specificity of
a MoM implementation for planar circuits in shielded layered
media is such that the constant in front of is very large
when the matrix elements are calculated through direct summa-
tion of waveguide mode contributions. In Section III, we de-
scribe an FFT-based algorithm, which drastically reduces the
matrix fill operations to with a small multi-
plying factor.
In Section IV, we describe how the “far-zone” interactions

modeled by thematrix-vector product can be evaluated in
operations via the PFFT algorithm when modified

with a DGF for layered media in a shielding waveguide, thus
forming the fast MSOs of the UFFT.

III. FFT-ENHANCED MFOs OF UFFT

The steps of the algorithm are described for the evaluation
of example matrix element in a Galerkin MoM for rooftop
basis and testing functions and [40] that conform to
a regular grid. The grid-spanning waveguide cross section with
divisions from 0 to and divisions from 0 to is intro-

duced. Analytic evaluation of the integrals of basis and testing
functions in (2), followed by reordering of summation as in [41],
produces the following form:

(4)

where and are the centers
of the test and basis functions, respectively. Coefficients
in (4) are defined as an infinite double series that can be calcu-
lated to desired precision [41]. These coefficients are indepen-
dent of the locations of test and basis functions and are solely
defined by dimensions of the waveguide and the layered sub-
strate. Using identities and
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for each of the sine and co-
sine functions in (4) obtains the matrix element in the form

(5)

The matrix element in (5) is seen to be the sum of the four
terms, each of which is in the form of a 2-D discrete Fourier
transform (DFT). Further, each of the DFTs have convolution/
correlation dependence on the indices defining spatial positions
of the basis and testing functions. Thus, any matrix element can
be obtained by first calculating matrix using FFT as

(6)

for , , and
then calculating the matrix element values as

(7)

Note that for indices and outside the range
and , values are cal-

culated according to periodicity of the DGF, which is reflected
in matrix . This calculation scales as
operations due to FFT, where and are the number of
discretization cells on the - and -axis, respectively. Subse-
quently, all matrix elements can be calculated from
via (7). In case of the UFFT and other matrix-free methods,
only matrix elements corresponding to the near
interactions need to be computed, as opposed to in
methods, where the matrix is explicitly stored. Thus, calcula-
tion of requires operations with
the proposed FFT enhanced approach. In a similar manner,
matrices , , and are computed for evaluation of

the remaining three blocks , , and of the impedance
matrix in the general form

(8)

where for the case of PEC walls the factors are given by
; , ; , ;

, and for the case with walls made of PMC the sign
factors are ; , ; ,

; , where denotes the source basis
function orientation, or .
While the above algorithm is directly applicable to the eval-

uation of the matrix elements in the MoM formulation with ge-
ometry conforming to a regular grid, it can also be used for im-
plementation of the MoM with more general off-grid meshes.
In this case, taking as basis and testing functions in (2), the
delta-functions located at the nodes of the regular grid, i.e.,

and summation reordering according to [41], we obtain the rep-
resentation for the Green’s function samples on the regular grid
in the form of (4)

(9)

By casting (9) into the DFT-based representation similar to (5),
we can calculate the Green’s function for any pair of observation
and source points on the grid as

(10)

where the generating matrix is defined on the regular grid
as similar to (8). From a matrix of regular
grid samples , the values of function at any arbi-
trary location on , can be obtained via
2-D interpolation [42]. Following a similar procedure for other
components of the DGF, we obtain the following continuous
dependence of the DGF on the source and observation point co-
ordinates:

(11)

Formula (11) can be utilized in evaluation of the impedance ma-
trix elements in the MoM defined on nonuniform meshes using
standard quadrature rules. Sign factors in (11) are the same
as in (8). The proposed approach is appropriate for evaluation
of the matrix elements in pairs of source and basis functions,
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which do not encounter the DGF singularity. The matrix ele-
ments involving integration of the DGF singularity in the case
of a nonuniform mesh-based MoM can be evaluated via direct
summation over waveguide modes in (2) after the surface inte-
grals are evaluated analytically. Alternatively, the static compo-
nent of the DGF can be first extracted from the waveguide DGF
spectrum using the discrete complex image method (DCIM)
[43], [44] prior to its casting to the form (9). Subsequently, the
infinite series of the static contribution can be calculated as de-
scribed in the Appendix [45].

IV. FFT-ENHANCED MSOs OF UFFT

A modification of the PFFT algorithm [5] is described for
acceleration of the matrix-vector product in the case of
shielded layered media DGF. It is important to point out that the
distinction between “near-zone” and “far-zone” interactions in
the PFFT algorithm is not based on electrical distance [33]–[35].
Thus, the method can be applied without loss of effectiveness
for structures ranging from electrically large to sub-wavelength
[35].
First, a regular rectangular grid with discrete increments

and , which we refer to
as the PFFT grid (as in this work, it may optionally be distinct
from the regular grid used in the MFO), is overlain on the
rectangle defined by the intervals and
corresponding to twice the waveguide cross section over and
. In the following, the indices are
used to identify the nodes of the grid. In Fig. 1, a portion of
this grid for is shown by circles for
the case when the structure under study is a six-patch antenna
array. Also shown in Fig. 1 is the MoM grid that is used for the
discretization of the unknown current density on the patches. It
is noted that the MoM mesh can be nonuniform. It is stressed
that the PFFT grid is introduced over an area four times that
of the original cross section in order for the DGF used in (11)
to yield all elements of the periodicity [39] for the -matrix
elements. Once the PFFT grid is introduced, each of the basis
and testing functions and are replaced by delta
sources, thus defining the so-called expansion box (also known
as a stencil) [5],

(12a)

(12b)

In the above, are the locations of the delta
sources associated with the th basis or testing function. Even
though the indices of summation in (12) run over the entire
PFFT grid, only terms are nonzero for each basis/test
function, where is the order of the expansion box depicted
in Fig. 1, which depicts the way the delta-source representation
(12) is performed for a basis function in the case of .

Fig. 1. Projection of theMoM rooftop basis functions on the regular PFFT grid.

Given the order of the expansion box, nodes of the
PFFT grid are allocated for the assignment of the delta sources.
The choice of the expansion coefficients, represented in com-
pact form through the arrays and , is not unique. Various
criteria may be used to specify their values. Investigation shows
that even though the multipole reproduction criteria of [5] tra-
ditionally used in PFFT for open structures provides sufficient
accuracy, more specific criteria based on the least squares
approximation of the fields of the waveguide eigenmodes can
provide better accuracy. One may consider the expression for
the component of field produced by th expansion function

,

(13)

It appears that should be replaced with an approxima-

tion, , the error in the scattered field produced by the th
expansion function is given by the functional, ,

(14)

for and . Hence, the problem
of projecting the th expansion function on the PFFT grid can
be formulated as the problem of minimization of the functional
(14) in the least squares sense [39] as follows:

minimize over (15)

where and are truncation indices that must be chosen such
that all eigenmodes that are excited appreciably by the specific
expansion function are taken into account. One can show [39]
that minimization of (15) is equivalent to the solution of the
following redundant set of linear algebraic equations with

unknowns :

(16)
where . The indices are used
in (16) instead of to single out the nonzero elements

from the elements of the entire array, where
. The procedure for defining the coef-

ficients of the projection of a testing function on the PFFT grid
is the same as the one for the expansion functions.
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Once the coefficients of the arrays and have been de-
termined, substitution of (12) into the integrals in (2) yields the
following expressions for the matrix-vector product :

(17)

where . Substitution of (11) into (17) with the
well-known MoM procedure yields the convolution-correlation
representation for the matrix-vector product , shown in (18)
at the bottom of this page, where the matrix is defined in
terms of the product

(19)

In matrix form,

(20)

where , denote the Toeplitz and Hankel
matrices formed by the four convolution-correlation terms

entering in (20), and the superscript stands for matrix trans-

pose. Each partial matrix-vector product can be
computed using the FFT algorithm [39], thus providing the
desired complexity for the MSO

where and are operations of the for-
ward and inverse DFT, respectively. The index has been as-
signed to the FFT operations because in the case when the ma-

trix-vector product contains correlation dependence
over a certain index, in addition to the forward FFT operation
one has to perform a certain rearrangement of the elements in
the spectral domain with respect to that index [39].
Since the FFTs of the DGF matrices are com-

puted once and then stored, it is straightforward to show that,
for an iterative matrix solution with number of iterations ,
the number of required operations scales as ,
where is the time per FFT operation. At each it-
eration, the above process calculates the product [see
(3)]. While the calculation of the “far-zone” interactions
using the PFFT process are reasonably accurate, the calcu-
lated “near-zone” interactions are not. Thus, the operation

is required to correct the calculation of the
“near-zone” interactions by replacing the PFFT calculated ones
with those obtained using the exact MoM representation of the
expansion function interactions [see (8)]. These operations are
of complexity. In addition to reduction in the computa-
tional complexity of iterative solutions, PFFT implementation
relaxes memory requirements.
Since only the “near-zone” matrix elements are stored, the

overhead associated with the storage of the MoM ma-
trix is avoided. Instead, storing of the “near-zone” interactions
results in memory requirements that scale as with ag-
gressive near part sizing. However, one can increase the size
of the near part to provide better convergence behavior, essen-
tially trading memory capacity for CPU time, and potentially,
accuracy. Furthermore, due to the Toeplitz/Hankel-like charac-
teristics [39] of the Green’s function matrices on the PFFT
grid, those memory requirements scale similarly as .

(18)
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Fig. 2. Fractal nature of clock networks allow for scaling the number of un-
knowns in simulation of an applicable example.

For the benefits of PFFT to be meaningful, the “far-zone”
interactions need to be calculated with sufficient accuracy. This,
in turn, is dependent on the accuracy of the equivalence from the
projection defined in (12).

V. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the performance of the proposed UFFT
scheme for shielded structures, three examples are considered.
For parity, all examples are analyzed on a square microstrip
substrate with .

A. Clock Network Example

An example is developed that is easily scalable with regard
to unknowns for demonstration of scaling effects on a common
geometry. A digital clock network is chosen (expanding [46])
as it is a fractal geometry for which scaling of is readily ob-
served by extending the depth of the fractal as in Fig. 2. The
example is tested with six different geometries, each with suc-
cessively more fractal elements, scaling from to

(Sonnet) and from to
(UFFT). All examples are analyzed on a 1 cm (5/32 in ) square
substrate at 100 GHz. Note that number of unknowns in con-
ventional Sonnet is limited by the 32-GB memory capacity of
the test system. Timing and memory usage are benchmarked
against conventional Sonnet for each example possible. Addi-
tionally, accuracy is compared in the form of -parameters and
also calculated current distributions.
All results for this example are computed on the inexpensive

Intel core i5-3570k 3.4-GHz quad-core CPU, and can be seen in
Fig. 3. The UFFT demonstrates substantial performance bene-
fits over conventional Sonnet both in terms of memory utiliza-
tion and CPU time. Moreover, while Sonnet is able to take ad-
vantage of all CPU cores, multi-threading is left to future work
for the UFFT, meaning optimized code will see further perfor-
mance increases. In a similar fashion to the first example, the
overhead of the PFFT algorithm results in circuits featuring a
small number of unknowns being computed faster in traditional
Sonnet. This takeover occurs when unknowns surpass around
7000.
Accuracy in this example is compared to conventional Sonnet

by way of -parameters and current distributions. Generally,
switching to the PFFT from conventional Sonnet yields an ad-
ditional 1%–3% error component for dominant -parameters in
multiport circuits.

Fig. 3. Performance comparison between UFFT and Sonnet for complete so-
lution of the problem. Memory requirements and solve time are shown. Note
that Sonnet curves stop at due to memory capacity limitations.

Fig. 4. Interdigital capacitor example circuit geometry. Port excitation is 1 V
at the blue triangle (in online version).

Fig. 5. S11 versus frequency, Sonnet (dark blue line in online version) versus
UFFT (medium blue square in online version), versus MLFMA (light blue tri-
angle in online version).

B. Interdigital Capacitor Example

The capacitance of an interdigitated filter is extracted to
benchmark accuracy of the UFFT solver, as well as to compare
performance versus a state-of-the-art MLFMA algorithm [48].
The example circuit is a microstrip configuration containing
three terminals for two capacitors for device loading, fol-
lowing general principles established in [47], and is shown in
Fig. 4. The structure is on a 1-cm (5/32 in ) square micostrip
substrate of thickness 0.1 mm (0.004 in) and is simulated at
100 GHz. All fingers are 3.55-mm (0.140 in) long and 0.2-mm
(0.008 in) wide. The structure is centered on the substrate with
feed lines to the edges. All other lines and gaps are also 0.2 mm
(0.008 in) wide with their length being deterministic based
on other defined parameters. -parameters are seen in Fig. 5,
and timing is shown in Fig. 6. Note that while the UFFT and
Sonnet solvers share partial data from MFOs, the methodology,
code, results, required resources, and even language used for
coding are distinct between the two. The MFO times in Fig. 6
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Fig. 6. Logarithmic timing data for MSO, MFO, and overall time, as well as
memory usage for Sonnet, UFFT, and MLFMA simulations of the interdigital
capacitor geometry.

Fig. 7. Geometry for the digital delay line (meander) example. Port excitation
is 1 V at the blue triangle (in online version).

are measured as longer than would be seen in practice due
to prototype-mandated diagnostics. As they are uniformly
increased as a percentage, times are valid for comparison.
Note that the performance of the UFFT algorithm exceeds
MLFMA in a large part due to the 3-D planar nature of the
UFFT implementation versus the arbitrary 3-D implementation
of the MLFMA algorithm used [48]. Simply, the UFFT has
more efficient meshing of the structure. This is because only
the conductor needs to be surface meshed in the UFFT while
the entire substrate needs to be volume meshed in the MLFMA.
This results in for UFFT versus for
the MLFMA.

C. Digital Bus With Delay Line

A digital bus with a meander delay line example is used to
demonstrate the accuracy of the UFFT solver for circuits fea-
turing curved metallization. The example geometry, shown in
Fig. 7, consists of unknowns modeling an 8-bit
bus printed in a microstrip configuration on a 10 cm 10 cm
1 mm (3.94 in 3.94 in 0.039 in) substrate. The bus fea-

tures lines with width and separation of 1 mm (0.039 in), two
of which have delays of separate amounts. The meander geom-
etry is of interest as it demonstrates the capability of the solver
to accurately model rounded surfaces despite being discretized
solely by rectangular basis functions.
Results of current distribution behavior, shown in Fig. 8 with

excitation of the upper delay line, are very good. Plots show
accurate physical behavior in terms of full-wave patterns, edge
singularities, and other physical phenomenon. The figure com-
pares Sonnet (top), the UFFT (middle), and the difference be-
tween the two (bottom).
As seen in Fig. 9, simulation timing and memory require-

ments again heavily favor the UFFT versus conventional
Sonnet, despite the single-threaded implementation for the
UFFT and multi-threaded implementation for Sonnet. Note
that both MFO times include file write times as in the previous
example.

Fig. 8. Current distributions as calculated by Sonnet (top) and UFFT (middle),
and the difference between the two (bottom).

Fig. 9. Memory requirements, MFO time, andMSO time for Sonnet and UFFT
for the meander example.

VI. CONCLUSION

This work has introduced a new methodology, UFFT, which
combines FFT-enhanced MFOs with FFT-enhanced MSOs in
MoM analysis of planar circuits embedded in layered media in-
side a rectangular enclosure. The UFFT framework features a
modified version of Sonnet’s FFT-based MFO combined with
a precorrected-FFT acceleration of the MSO, and identifies, de-
velops, tests, and shows a meaningful relationship between the
two. Further, FFT-enhanced MFO as in [38] is detailed for the
first time. Indeed, the underlying principles of the UFFT can be
applied to a broad range of workflows and applications. Such
implementations become inevitable when the number of un-
knowns associated with electromagnetic analysis becomes high,
as in conventional RF integrated circuit (RFIC) design.
CPU scaling of and memory scaling of

are demonstrated with a number of large examples, with tremen-
dous performance improvements shown versus the traditional
MoM implementation in Sonnet with identical meshing. More-
over, even larger performance improvements are shown versus
a state-of-the-art MLFMA implementation due to more efficient
meshing of the structure.

APPENDIX

EVALUATION OF GREEN’S FUNCTION SAMPLES VIA
DCIM FITTING AND EWALD’S TRANSFORM

For evaluation of the near interactions between elements non-
conformal to the uniform grid, the approach based on subtrac-
tion and analytic integration of the Green’s function singu-
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larity followed by quadrature-based integration [49] of the non-
singular part of the DGF is commonly used [33]–[35].
First, the components are expressed in terms of the

scalar potentials [50] as in

(21)

where is the wavenumber of the media at the observation
point. The scalar potentials are the contributions to the
total field. Their spatial dependence has the form

(22)

where sign factors are as shown in (8) and potential is

(23)
In (23), is dimensionless and defined by the layered
media and waveguide. Consider the case where the media con-
sist of a single layer of thickness and of relative permittivity .
Let the 1 denote free space and 2 dielectric,

(24a)

(24b)

where

if
if

is the propagation constant of the th mode inside the th do-
main, . In (24), it is assumed that the source and ob-
servation points have the same location, , corre-
sponding to the plane located above the air–dielectric interface.
The reflection coefficients in (24a) and (24b) for this single layer
configuration are

(25a)

(25b)

The key to the acceleration of the series in (23) is the fitting
of the spectra as a function of by exponentials,
making use of the generalized pencil-of-function technique

(GPOF) [51]. Herewith, the fitting is performed for such
that the spectra are purely real. Hence, it is

(26)

where all constants, , in (26) are positive
real. The series in (23) with the approximate spectra
can then be taken as the reference series for the application of
Kummer’s transformation [52]. Thus, (23) is computed as

(27)

In the above expression, the series containing the difference
converges very fast as soon as the indices

and assume values such that . The second term is
first reduced to the free-space periodic DGF using Poisson sum-
mation formula [49], [53]

(28)

The series in the right-hand side of (28) can be evaluated using
Ewald’s technique yielding exponential convergence [54].
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