
An Investigation of Microstrip Conductor Loss

■ James C. Rautio

When asked how microstrip conductor loss varies
with frequency, most high frequency designers im-
mediately answer, “With the square root of fre-

quency.” In other words, if frequency is quadrupled, then loss
is doubled. We have a nice simple answer for a nice simple
question; however, this simple answer does not withstand
scrutiny. Take any microstrip transmission line and an ohm
meter. While the measured resistance is small, it is not zero.
However, the square-root-of-frequency rule predicts zero resis-
tance at zero frequency. I call this the “ohm-meter paradox.”

Most experienced high frequency designers are aware of
the ohm-meter paradox, but they often do not know why or at
what frequency the square-root rule fails. This question arose
on an Internet forum (http://rf.rfglobalnet.com/forums/
General/Forum.asp, thread 895) and inspired the research
presented in this article. All numerical electromagnetic (EM)
analyses described in this article can be duplicated with the
Sonnet Lite planar EM solver, available for free download at
http://www.sonnetusa.com.

High Frequency Conduction
The result of the Internet discussion and subsequent research
showed that there are three, not just two, distinct frequency
regions of interest. The high frequency region is most familiar
to the high frequency designer. Loss increases with the square
root of frequency due to the “skin effect.” Skin effect occurs at
high frequency for good conductors and is due to electric cur-
rent being restricted to the surface of the conductor. As the fre-
quency increases, this skin-effect layer of current becomes
thinner. As the current becomes more and more confined to
the surface, resistance increases.

Skin depth is given by

δ
πµσ

= 1
f (1)

where
δ = skin depth (m)
µ = conductor magnetic permeability (µ0 = 4π × 10-7) (H/m)
σ = bulk conductivity (S/m)
f = frequency (Hz).
We can see from the above that if frequency quadruples,

then skin depth is cut in half. Since the current can now flow
in only half of the original cross-section, resistance doubles.

Notice µ in the equation. Designers sometimes forget that
magnetic permeability has the same importance as frequency.
If a magnetic metal (like nickel) is used, a large increase in
skin-effect resistance should be expected.

Also well known theoretically is something called the
“edge singularity.” Any current flowing on a good conductor
tends to flow close to and parallel to any sharp edge. In fact, if
the edge is infinitely sharp, infinite current density flows par-
allel to and exactly on the edge. This does not happen in prac-
tice, because the infinite electric fields would kick the atoms
off the conductor edge and the edge would no longer be infi-
nitely sharp. This is called electromigration.

A good intuitive understanding of the edge singularity is
provided by the following thought experiment. Imagine plac-
ing electrostatic charge on a microstrip conductor. The elec-
trons in the electrostatic charge repel and push each other to
opposite edges of the line. This represents the minimum po-
tential energy configuration. High frequency is similar; just
imagine the electrons now moving back and forth. (This last
step is called a “quasi-static approximation.” Experts will rec -
ognize I have simplified matters.)
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In summary, skin effect concentrates current near the con-
ductor surface, increasing resistance. In addition, the edge ef-
fect further restricts most current to the edges of the
conductor, increasing resistance even more. This is how high
frequency loss becomes large.

High Frequency Transition
Let’s make a first attempt to explain the ohm-meter paradox.
How can we have loss at zero frequency, when the square-
root-of-frequency rule says we should have no loss? Skin
depth is the obvious answer. At zero frequency, skin depth is
much larger than conductor thickness, and current is uniform
through the entire thickness of the line. If we lower the fre-
quency, the cross-section in which the current flows can no

longer increase. Thus, at low frequency, loss should be
constant with frequency.

The frequency at which a conductor transitions from elec-
trically thick (high frequency) to electrically thin (medium fre-
quency) is

f
tc 2 2

4=
πµσ (2)

where fc 2 is the critical frequency (Hz) at which the conduc-
tor thickness equals twice the skin depth. We use twice the
skin depth because there is skin effect current on both sides
of the conductor.

Verification by Numerical Experiment
Let’s check to see what happens in a quick numerical simula-
tion. We simulated a section of a line made of gold for which
we have measurements. Details of the analysis geometry are
in Figure 1. The actual transmission line has 7 µm of polyi-
mide everywhere.

For high accuracy,For this analysis, the microstrip line is
modeled as two infinitely thin sheets of conductor. One
conductor sheet is placed directly on the surface of the sub-
strate to represent the bottom side of the actual metal. The
other conductor sheet is placed at the top of the actual
metal. For high frequency, when the conductor is thick with
respect to skin depth, the two infinitely thin sheets of con-
ductor represent the two skin depth generated sheets of
current in the actual conductor. At low frequency, the cur-
rent simply splits equally between the two infinitely thin
sheets of conductor. Details of how loss is modeled in Son-
net are provided in a sidebar in this article. this line is
subsectioned 64-cells long and 16-cells wide. Analysis time,
including deembedding, is 7 seconds per frequency on a
400 MHz Pentium. A special option (Output Files->.lct file
name) is used to automatically synthesize the lumped
transmission-line parameters, in addition to S-parameters.
A logarithmic frequency sweep is specified (Complex
Sweep->Edit->Add) from 1 MHz to 20 GHz.

Figure 2 shows the calculated resistance per
meter for the microstrip line. It behaves very
much as expected. Loss increases at high fre-
quency and is constant at low frequency. A
curve for a square-root-of-frequency model is
also included. The unexpected behavior (rela-
tive to the square-root-of-frequency model)
above 5 GHz is discussed later.

For low frequency behavior, everything
seems fine. The critical frequency, fc2, is 363
MHz. At this frequency, loss is definitely be-
coming more constant with frequency. It is now
very tempting to conclude that we understand
microstrip loss and end our investigation.

However, instead of looking at Figure 2
with the attitude that we are correct and un-
derstand what is going on, let’s look at Figure 2
critically. The critical observer can see that loss
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Figure 1. Transmission-line geometry used for analysis. The
substrate is GaAs with polyimide passivation. In the actual line,
the polyimide is 7-µm thick everywhere. Loss tangent of the
polyimide is 0.005, and the GaAs is 0.0005. Drawing not to scale.
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Figure 2. Calculated resistance per unit length shows significant variance from
the standard square-root-of-frequency model.



does not become completely independent of frequency until
below 10 MHz, over one order of magnitude lower in fre-
quency. Perhaps we should consider the possibility that we do
not yet have a complete understanding.

Visual Verification
When something unexpected happens in high fre-
quency design, diagnosis is often best performed
by viewing the current distribution. Figure 3
shows the current distribution on the microstrip
line of Figure 1 at 400 MHz, 40 MHz, and 4 MHz.
At 400 MHz, the microstrip line still shows a strong
edge singularity even though it should be starting
to disappear. The current in one cell at the edge is
2.9 times that at the center (cell size = 0.4 µm). Even
at 40 MHz, the edge singularity is still there (edge
to center ratio 1.13). Finally, at 4 MHz, the edge sin-
gularity is gone (edge to center ratio 1.003). A dif-
ferent scale is used in Figure 3 for the 400 MHz
distribution because of the large dynamic range.

We can now see that two transitions must hap-
pen in order to resolve the ohm-meter paradox.
First, the frequency must become low enough that
the microstrip line is thin compared to skin depth.
This occurs at fc 2 363= MHz. Second, the edge
singularity must disappear, leaving a uniform
current distribution across the width of the line.
Now, the line acts like a simple resistor with cur-
rent flowing uniformly through the entire
cross-section of the conductor.

At what frequency does the edge singularity
disappear? My first guess, and that of others I
asked, is that when the conductor width (not
thickness) is small compared to skin depth, then
the edge singularity should disappear.

This is a nice sounding hypothesis, but does it
withstand critical quantitative scrutiny? For this
microstrip line, the conductor width equals twice
the skin depth at 11 MHz. This could be consistent
with both Figure 2 and Figure 3, and, once more, we
might be tempted to end this line of investigation.

However, the skin-depth-line-width hypothe-
sis fails for other transmission line geometries.
For example, a 2-µm thick, 0.635-mm wide line on
0.635-mm thick Alumina also demonstrates
nearly constant resistance below 10 MHz. How-
ever, the skin-depth-line-width hypothesis pre-
dicts the transition should occur around 70 kHz!
This hypothesis must be discarded.

The second hypothesis we considered is more
robust. If we assume the transition frequency is
that frequency for which the resistance per unit
length equals the inductive reactance per unit
length, we have

f
R

Lc 1 2
=

π (3)

where
fc 1 = first critical frequency (Hz)
R = resistance per unit length ( = 1/(σwt), w = width(m), t =

thickness(m)) (Ω/m)
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Figure 3. Edge singularity is still clearly present at 400 MHz (bottom), and
even at 40 MHz. However, it is gone at 4 MHz (top). This suggests that at
around 40 MHz, the current distribution encounters a second transition. Port
1 is excited by a 1 V source in series with 50 Ω . Port 2 is terminated in 50 Ω.
Note different scales.

!<FTYP NET

DIM
FREQ

CKT

! Define units for circuit parameters.
GHZ

!Analyze 215.25 um long line, cascade 32 times.
GEO 1 2 6over32mm.geo OPT=vd CTL=ctl.an
GEO 2 3 6over32mm.geo OPT=vd CTL=ctl.an
GEO 3 4 6over32mm.geo OPT=vd CTL=ctl.an
GEO 4 5 6over32mm.geo OPT=vd CTL=ctl.an
:
:
GEO 29 30 6over32mm.geo OPT=vd CTL=ctl.an
GEO 30 31 6over32mm.geo OPT=vd CTL=ctl.an
GEO 31 32 6over32mm.geo OPT=vd CTL=ctl.an
GEO 32 33 6over32mm.geo OPT=vd CTL=ctl.an
DEF2P 1 33 line

FILEOUT !Output the 2 port parameters for ‘line’.
line TOUCH 6mm.s2p S MA R 50

FREQ
FREQ SWEEP 0.05 20.05 .1

Figure 4. The Sonnet netlist analysis capability is used to cascade the
215.25-µm-long line 32 times to yield analysis results for a 6,888-µm-long line.
Each GEO line launches an electromagnetic analysis. However, Sonnet recog-
nizes that each one is identical and only one EM analysis is performed with the
result used 32 times.



L = inductance per unit length ( = Z v0 / , v = velocity of
propagation(m/s)) (H/m).

This gives a critical frequency of 20 MHz. In addition, this
hypothesis gives reasonable answers for all other cases
checked. While this equation seems reasonable and gives good
results, it is purely empirical and has not been verified by rigor-
ous derivation from Maxwell’s equations.

High Frequency Problem
We are still left with an unexplained difference between calcu-
lated loss and the square-root model at high frequency (Fig-
ure 2). Resistance is increasing faster than the square root of
frequency. This suggests that something more than just sim-
ple skin effect is impacting high frequency loss.

The solution to this puzzle is found in the fact that
microstrip is dispersive. It is dispersive because the dielectric

is inhomogeneous. In other words, the fields of the microstrip
line encounter more than one kind of dielectric. When a trans-
mission line is dispersive, things like characteristic imped-
ance and velocity of propagation change with frequency. In
order for these quantities to change, the current distribution
must also change. If the current distribution changes, then the
resistance must also change.

Qualitatively, when resistance increases, we expect the
current to become, in some way, restricted to a smaller
cross-section of the conductor. For example, we might expect
the current to become more strongly concentrated on the edge
or on the bottom side as frequency increases.

Quantitatively, the calculated resistance increases 22%
more than the square-root-of-frequency model over the
range of 3 GHz to 20 GHz. The ratio of the current density
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The Sonnet Model of Conductor Loss

All computer analysis requires an abstraction of a model

from physical reality. As such, computer analysis is always

an approximation to the reality being modeled. Details of the

two-sheet Sonnet loss model are provided here. This allows the

reader to judge the appropriateness of the model and allows the

reader to duplicate the model if desired.

At high frequency, the physical conductor being modeled is

thick with respect to skin depth. As such, there are two thin

sheets of current flowing on the conductor. One sheet of current

flows on the bottom side of the conductor. The other sheet of

current flows on the top side of the conductor.

Planar analyses, including Sonnet, model infinitely thin sheets

of current. For high frequency, abstraction of a model appropriate

for Sonnet analysis is simple. We model the conductor as two in-

finitely thin sheets of current. One sheet is placed at the bottom

of the thick conductor. The other sheet is placed at the top.

At low frequency, current flows uniformly through the entire

cross-section of the line. Current in the abstracted model is split

evenly between the top and bottom.

In order to determine the error involved in using this model,

one simply analyzes additional multiple-sheet models. For exam-

ple, one could split the conductor thickness into four, eight, or six-

teen sheets. This has not been done for this particular line,

however experience has shown that almost no change in loss re-

sults. When two or more sheets are used to model a transmission

line, be certain all the Sonnet analysis ports are numbered as

shown in the figure.

Sonnet uses two parameters for loss analysis. RDC is the basic

resistive loss at dc in ohms/square for each sheet of conductor.

RRF is the skin effect square root of frequency loss. Specifically,

R
n
tDC =

σ

RRF = πµ
σ

where n is the number of sheet conductors used in the model.

t

h

w

t

h

w

1

1

Typical transmission line to be modeled.

Sonnet two-sheet conductor loss model. Note both sheets at a
port location carry the same port number.



flowing in the center on the bottom side of the metal to the
top side increases 11%. Thus, at high frequency for the geom-
etry of Figure 1, current does indeed tend to concentrate on
the bottom side.

The ratio of the total current flowing in one cell width on
the edge to the current in the center of the bottom side in-
creases 15%. Thus, the edge singularity does indeed become
stronger at high frequency.

It appears that the increasing edge singularity is, at least in
this case, more important than current shifting from the top
side to the bottom side, but both effects are important.

Experimental Verification
We can compute all we want, but no research is complete
without experimental verification. Measured data is pre-

sented for a 6,888-µm- long line on GaAs. Analysis geometry
is shown in Figure 1. This line is analyzed by first using Son-
net (or Sonnet Lite) to analyze a line with 1/32 of the total
length. This result is then cascaded with itself 32 times, as
shown in the Sonnet netlist of Figure 4.

When doing this sort of cascaded analysis, accuracy is crit-
ical. Any error in the initial analysis is multiplied 32 times. For
this reason, Sonnet’s deembedding capability combined with
a very small cell size (described earlier) is used. In fact, this
sort of cascaded analysis is an excellent way to reveal analysis
error when validating software.

Figure 5 shows the measured versus calculated results for
this through line. Measured data was taken on an HP 8510C
vector automated network analyzer. A SOLT calibration was
performed, with the deembedding reference planes set to the
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The n in the equation for RDC , equals 2 for the two sheet loss

model. This is because low frequency current is divided between

two parallel connected conductors, each having half the thickness

and requiring twice the RDC of a single sheet conductor.

To calculate the total surface impedance, one might be

tempted to simply add the low frequency RDC to the high fre-

quency resistivity. Such a model not only yields incorrect results

for resistivity, it also ignores the fact that a complex surface im-

pedance (with equal real and imaginary parts) is required at high

frequency. Rather, Sonnet calculates the total, frequency-depend-

ent surface impedance (for normal conductors) according to

Z
j R f

e

S j R f

R

=
+

−
−

+

( )
( )

1

1
1

RF

RF

DC

where Z S is the total surface impedance (ohms/square). This

equation is derived by truncating the usual exponential integral

used to calculate skin depth.

At low frequency, Z RS = DC . At high frequency, Z j RS = +( )1 RF

multiplied by the square root of frequency. When more than an

octave above fc 2, only RRF is important. When more than an oc-

tave below fc 2, only RDC is important. In fact, the square of the ra-

tio of the two sheet RDC /RRF set equal to unity defines fc 2. (If a

situation is encountered with only one significant sheet of skin

depth current flowing, use the one sheet RDC .)

To calculate RDC and RRF for the validation experiment, bulk

conductivity was measured with an HP3458A digital

multimeter in two-wire mode, calibrated so as to remove

probe contact resistance. Four through lines were measured

with an average bulk conductivity of 3.42 x 107 S/m. From this,

the two-sheet RDC for the 9 µm thick line is 0.0064

ohms/square, and RRF is 3.4x10-7.

A single-conductor Sonnet loss model is also possible and, in

fact, is most commonly used. In this case, when calculating RDC ,

use n = 1. For RRF , we must include the effect of two sheets of

current in a model that uses a single sheet of current. If the cur-

rent splits exactly equally between the top and bottom of the

conductor, simply use one-half the calculated value of RRF . With

microstrip, current concentrates on the bottom side, so a value

closer to the above RRF should be used. The equivalent single

sheet RRF is given by

R R k k′ = +RF RF( )1
2

2
2

where

R ′RF = equivalent single sheet RRF

RRF = high frequency resistivity parameter for Sonnet loss model

k1 = fractional top side current

k2 = Fractional bottom side current ( . )k k1 2 10+ = .

This equation assumes the total transmission-line current is

the same in both the one-sheet and two-sheet models. Use of

R ′RF in the one-sheet model then yields the same power dissipa-

tion as RRF in the two-sheet model. The values of k1 and k2 can be

determined from an initial analysis using the two-sheet model. Use

the Sonnet (or Sonnet Lite) visualization program emvu to evaluate

the top and bottom current split quantitatively.

Microstrip dispersion causes the value of k1 and k2 to vary as a

function of frequency. If the values from a single frequency are

used to set R ′RF for all frequencies, error of up to about 0.1 dB is

seen for the transmission line described in this paper.

For two or more conducting sheet models, use RRF unmodified.



ground-signal-ground (GSG) probe tips. Cascade Microtech
150-µm GSG probes were used.

Data was measured for four separate through lines. S12 and
S21 magnitude from all four lines (for a total of eight values)
were averaged and plotted. In addition, twice the (unbiased)
sample standard deviation (two sigma) is plotted at the top of
the graph. The standard deviation gives an indication of the
sum of fabrication variation plus measurement repeatability.
Absolute measurement error is uncharacterized.

In a tradition that I hope will become established in high
frequency publication, I shall refrain from describing the
agreement between measured and calculated as “good,”
which is a subjective conclusion properly left to the in-
formed reader. As the author, I consider it proper only to
point out that the calculated data is nearly everywhere
within two sigma of the measured data and often within
one sigma.

The calculated data is based entirely on physical mea-
surements and dc resistance measurements made independ-
ently of the high frequency measurements. There has been
no attempt to “tune” resistance or physical parameters to
achieve a better fit.

Figure 5 shows that the high frequency range (greater than
363 MHz) varies according to the Sonnet loss model to within
measurement error. As can be seen in Figure 2, for most of this
frequency range. loss is not square root of frequency.

Only a few data points are within the medium frequency
region, 20 MHz to 363 MHz. However the fc 2 transition region
also influences data above the 363 MHz critical frequency.
While a rigorous validation requires more data in the medium
frequency range, the data presented suggests the medium fre-
quency transition is correctly modeled to within measure-
ment error. The especially small measurement error over this
frequency range further strengthens the medium frequency
loss- model validation.

Measured data is unavailable below 50 MHz, and thus
the low frequency transition frequency, fc 1, remains uncon-
firmed by measurement. This would be a useful measure-

ment, awaiting access to accurate low frequency measure-
ment capability.

These results were obtained without consideration of sur-
face or edge roughness. Roughness can be important if the
vertical scale (i.e., average vertical peak-to-valley distance) is
larger than or on the order of skin depth (1). In addition, the
horizontal scale (i.e., average horizontal distance from one
peak to the next) must be on the order of skin depth. If the hor-
izontal scale is much larger or smaller than the skin depth, the
impact of surface roughness is reduced.

These results assume a perfectly conducting ground plane.
The actual ground-plane conductivity was not measured. The
current distribution in the ground plane is essentially uniform
under the line, lacking the loss-generating edge singularity
seen in the transmission line itself. In this case, simulation indi-
cates the inclusion of finite ground-plane conductivity should
add a few percent to the total high frequency loss.

While Figure 5 might once more tempt us to conclude we
finally understand loss, the critical observer will point out
that inclusion of surface roughness and ground-plane loss
might shift the calculated data outside the two-sigma range of
the measured data. For further research, quantification of the
absolute measurement error, measurement of the actual
ground plane bulk conductivity, and visual inspection of the
surface and edge roughness would be appropriate.

Implications of the Loss Model
One might think that the low and medium transition frequen-
cies are so low that they are unimportant in applied design.
Often, this is true. However, there are exceptions with which a
careful high frequency designer should be familiar.

In the case considered, fc 2 is 363 MHz for a 9-µm-thick line
on GaAs. However, this frequency varies inversely with the
square of the thickness. Thus, a 1-µm-thick line has fc 2 over 29
GHz! Now, the entire measured frequency range of the line
falls in the medium frequency range.

The first critical frequency is important in resistor design.
Resistors properly operate only in the low frequency range,

below fc 1. If a planar resistor is operated near or
above fc 1, the resistance is higher than the design
value. Such situations are not common, but they
do exist. For example, a resistor 100-µm wide, us-
ing metal 0.1-µm thick, with a bulk conductivity
of 1.0 x 107 S/m, has a resistivity of 1.0 Ω per
square and fc 1 of 6.4 GHz. Depending on design
tolerances, the designer might want to use cau-
tion above about 3 GHz for this resistor configu-
ration.

It is possible for the order of the critical fre-
quencies to be reversed. The condition for this re-
versal, which is independent of bulk conductivity,
is

t
w

L> 8
µ (4)

where w is the conductor width.
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Figure 5. Results for the 6,888-µm-long line shows differences between aver-
age measured data and calculated data are nearly everywhere less than two
sigma and often less than one sigma. (Sigma is the sample standard deviation,
sample size = 8.)



This situation is most likely seen in low-impedance, ul-
tra-thin dielectric situations. For example, a 5-Ω line with an
effective dielectric constant of 3, a line width of 8 µm, and a
line thickness of 2 µm has fc 1 = 10 GHz and fc 2 = 7.3 GHz.

Sometimes a transmission line has a width that is much
smaller than its thickness. In this case, most of the current
flows on the sides of the line, rather than on the top and bot-
tom. This loss model is still valid, provided that thickness is
taken as the smaller of the two dimensions. If thickness and
width are about equal, significant current flows on all four
sides of the line and a more sophisticated four conductor
sheet model can be used. Alternatively, an equivalent one or
two sheet model can be developed, using the equivalent resis-
tance technique described in the sidebar.

Finally, the most significant result impacting applied high
frequency design is that microstrip loss increases faster than
the square root of frequency above fc 2. This is due to
microstrip dispersion, where the edge singularity becomes
stronger and current concentrates on the underside of the line
as frequency increases. This result also offers a possible expla-
nation of a common high frequency designer’s complaint,
“The measured loss is higher than predicted.” Optimistic pre -
dictions are presumably based on a simple square-root-of-fre-
quency loss model.

Conclusion
Microstrip conductor loss exhibits complicated behavior that is
not generally recognized. Specifically, there are three frequency
ranges of interest. At low frequency, current is uniform through
the entire cross-section of the line, and the line behaves like a re-
sistor. At medium frequency, the edge singularity forms. In this
case, current concentrates on the edge of the line, increasing the
resistance. At high frequency, the current splits into two sheets of
current, one on top of the line, the other on the bottom of the line.
Since microstrip dispersion causes the edge singularity to be-
come larger and current to concentrate on the bottom side as fre-
quency increases, the total resistance increases faster than the
normally expected square root of frequency.
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