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Abstract—The error due to discretization in a method-of-
moments analysis of a parallel plate or metal–insulator–metal
(MIM) capacitor is discussed. A technique related to Richardson
extrapolation is used to develop a model for the error due
to subsectional discretization. The results are for Galerkin’s
method using rooftop basis functions; however, the technique
can be applied to any variational moment-method calculation. An
expression is presented for the error in capacitance calculations,
which is shown to hold for changes in geometry and dielectric
constant. In addition, the expression for error is shown to be
accurate for a wide range of meshing geometries. Surprisingly,
the error model is not an upper bound, but rather is met nearly
in equality for all geometries considered. Thus, the error may be
simply subtracted from the calculated value for a more accurate
result.

Index Terms—Capacitance calculation, discretization error.

I. INTRODUCTION

GALERKIN method-of-moments analyses exhibit a vari-
ational property, i.e., as the number of basis functions

used approaches infinity, the numerical solution converges to
the exact solution [1] to the extent allowed by the numerical
precision used. This principle has been applied to the error
analysis of a stripline transmission line used as a benchmark
since its exact solution is known [2]. For the electromagnetic
analysis of parallel plate or MIM (metal–insulator–metal)
capacitors, a similar analysis is performed here by isolating
the discretization error in each direction and observing the
convergence behavior.

The key to the proposed method is to consider the final
answer (the capacitance) of the calculation to be a function of
the discretization level or number of cells in a given direction

, and then to calculate the capacitance for several values of
. A function can be fitted to the results of these calculations

which is in turn evaluated at the desired (very time con-
suming) discretization to extrapolate capacitance values with
higher accuracy. This technique is generally used in Romberg
integration, and is known as Richardson extrapolation [8], [9].

For example, a square capacitor in the– plane can be
first discretized with a very small (high resolution) cell size in
the -direction while the number of cells in the-direction
is varied. This is then repeated in the-direction with a
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Fig. 1. MIM series capacitor cross-section layout used in the example.

fixed fine meshing in the -direction. Using a spreadsheet,
the convergence trend of the individual error sources (,
discretization) can be observed and an error model fitted to
the data. This model is then evaluated for a cell size of zero.

II. DISCUSSION

As a practical example of the procedure, a MIM capacitor
(shown in Figs. 1 and 2) 0.5-mm square with dielectric con-
stant 10.0 and dielectric thickness 100 nM is modeled on a
10-mm-thick substrate 1-mm square using Sonnet.1 A full
description of this software is given in [3]. ’s Spice option
[4] determines series capacitance and port discontinuity capac-
itance separately, so de-embedding of the port discontinuity is
not needed.

The capacitor was discretized with 256 cells across its length
( -direction) and the discretization in the width (-direction)
is varied from 2 to 256 cells. This is then repeated holding the

-directed discretization at 256 and varying the-direction
cell count. A summary of the results is shown in Table I.

The analyses were performed at 1.0 MHz to make sure
parasitic inductances and capacitances were not confused with
the desired capacitance error. Although not the subject of this
paper, error models for the parasitics can also be determined.
At higher frequencies, effects due to the planar structure and
the ground plane also become significant. For example, an
equivalent circuit representation [5] for a MIM series capacitor
is shown in Fig. 3.

At low frequencies, dominates and is what is con-
sidered in this paper. is the sum of the parallel-plate

1Sonnet Software Inc., Liverpool NY.
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Fig. 2. Two top views (x, y plane) of the Sonnetxgeomdescription of the MIM series capacitor. The left view shows the top plate (cross hatch) with the
bottom plate in dotted line and the right view shows the bottom plate with top plate in dotted line. The two plates overlap up to the dotted lines.

TABLE I
THE BASELINE CONVERGENCE ANALYSIS

RESULTS FOR A 0.5-MM-SQUARE CAPACITOR

Cells/Length
M

Cells/Width
N

Cap (pF)
Change

(pF)
Change (%)

256 2 227.25513 — —
256 4 224.38529 �2.870 �1.279%
256 8 222.94062 �1.445 �0.648%
256 16 222.23118 �0.709 �0.319%
256 32 221.87358 �0.358 �0.161%
256 64 221.69608 �0.178 �0.080%
256 128 221.60892 �0.087 �0.039%
256 256 221.56736 �0.042 �0.019%

2 256 227.20116 — —
4 256 224.33293 �2.868 �1.279%
8 256 222.90571 �1.427 �0.640%
16 256 222.19704 �0.709 �0.319%
32 256 221.84819 �0.349 �0.157%
64 256 221.67935 �0.169 �0.076%
128 256 221.60070 �0.079 �0.035%
256 256 221.56736 �0.033 �0.015%

capacitance and the very small, but potentially important,
fringing capacitance around the edge of the capacitor plates.
This technique can also be applied to compute the bottom
plate to ground capacitance if desired. For planar shunt
capacitors, the same results apply and can be used to model

in Fig. 4 from [6].
Note in Table I that the change is reduced by half when

doubling the number of cells in either the- or -direction.

Fig. 3. Equivalent circuit model of a series MIM capacitor from [5].

Fig. 4. Equivalent circuit model of a shunt MIM capacitor from [6].

The small differences between theand cases are due to
the feedline positions, since in the first case the
feedline has a different discretization than the second case

. Looking at the convergence data in each case,
we can conclude that the total remaining error at a given
discretization level is very nearly equal to the change from one
level to the next. If this pattern continues for ,
we can assume the total error left in the 256 256 cell
result is pF pF. If true, then the converged
result is pF pF pF pF
with a subjectively estimated error of0.01 pF, or 0.0045%.
Note that at the other extreme, i.e., without using convergence
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TABLE II
CONVERGENCE ANALYSIS RESULTS FOR THESAME

CAPACITOR, BUT WITH DIELECTRIC THICKNESS 200 nM.
NOTE THE SIMILARITY WITH THE BASELINE CASE IN TABLE I

Cells/Length
M

Cells/Width
N

Cap (pF)
Change

(pF)
Change

(%)
256 2 113.68227 — —
256 4 112.23747 �1.435 �1.278%
256 8 111.52983 �0.718 �0.643%
256 16 111.17211 �0.358 �0.322%
256 32 110.99456 �0.178 �0.160%
256 64 110.90738 �0.087 �0.079%
256 128 110.86583 �0.042 �0.037%
256 256 110.84756 �0.018 �0.016%

2 256 113.62954 — —
4 256 112.19228 �1.437 �1.281%
8 256 111.48803 �0.704 �0.632%
16 256 111.13903 �0.349 �0.314%
32 256 110.97014 �0.169 �0.152%
64 256 110.89145 �0.079 �0.071%
128 256 110.85811 �0.033 �0.030%
256 256 110.84756 �0.011 �0.010%

TABLE III
CONVERGENCEANALYSIS RESULTS WITH THE BASELINE CONFIGURATION

INSULATOR DIELECTRIC CONSTANT CHANGED TO 1.0. EXCEPT FOR THEVERY

LOW ERROR RANGE. THE RESULTS ARE STILL SIMILAR TO THE BASELINE

RESULTS. THE LOW ERRORDISCREPANCIESARE CAUSED BY NUMERICAL

PRECISION ERROR DUE TO THE LOW ANALYSIS FREQUENCY. THIS SITUATION

ARISES WHEN SUBSECTIONSARE LESS THAN 0.00001 WAVELENGTHS

Cells/Length
M

Cells/Width
N

Cap (pF) Change
(pF)

Change
(%)

256 2 22.80688 — —
256 4 22.52021 �0.287 �1.273%
256 8 22.37769 �0.143 �0.637%
256 16 22.30741 �0.070 �0.315%
256 32 22.27319 �0.034 �0.154%
256 64 22.25693 �0.016 �0.073%
256 128 22.24960 �0.007 �0.033%
256 256 22.24958 0.000 �0.000%

2 256 22.76381 — —
4 256 22.47861 �0.285 �1.269%
8 256 22.34509 �0.134 �0.598%
16 256 22.28300 �0.062 �0.279%
32 256 22.25650 �0.027 �0.119%
64 256 22.24713 �0.009 �0.042%

128 256 22.24547 �0.002 �0.007%
256 256 22.24958 0.004 0.018%

analysis and using a coarse mesh in both dimensions (say,
4 4 cells), the total error can exceed 4%, an unacceptable
situation for a number of applications, especially in filter
design.

The parallel plate capacitance for this case is
221.136 pF. This means approximately 0.356 pF0.01
pF is due to fringing capacitance and numerical error other

than error due to cell width or cell length. Although our
expectation is that most of this is fringing capacitance, which
is discussed later; convergence analysis with respect to other
error sources (e.g., numerical precision, fast Fourier transform
(FFT) truncation, etc.) could be performed if desired.

The analyses were repeated for capacitors varying in plate
separation (from 100 to 300 nM), change in dielectric constant

Fig. 5. The magnitude of the error in the capacitance calculation versus
number of cells in theX- or Y -direction is shown in the dotted line. The
error model5:119=M is shown with the solid line.

(up to ), and aspect ratio (from square to 2:1) with
essentially the same results. Several cases are summarized in
Tables II and III. Discrepancies for the low error region of
Table III may be related to numerical precision (cell size is
about 2 M on a side).

Fig. 5 is a plot of the results from the % Change (error)
column in Table I versus or showing the relationship
between error in a given direction and the number of cells in
that direction. As was stated earlier, the basis of Richardson
extrapolation is to consider the result as a function of the
discretization. Here, we modify this procedure slightly by
considering theerror to be a function of the discretization
and model its behavior. Combining the and sources of
error, a rational function of the form

(1)

was fit to the data for both dimensions giving

(2)

where are the number of cells in the-, -direction,
respectively. After repeating this for the other tables (the ones
shown here and several other cases) the coefficients, in
(1) were averaged resulting in the subsectioning error model

(3)

In [2], it was found that error due to cell width can cancel
error due to cell length in a transmission line. However, in this
investigation, for capacitor subsectioning it was found that the
errors always add. Thus, the error provided by the above model
(3) may be simply subtracted from the calculated value, thus

(4)

providing a more accurate result without the effort involved
in a detailed convergence analysis (as in Tables I–III). For
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Fig. 6. Equivalent circuit model of a simulated series MIM capacitor includ-
ing error compensation.CMIM +Cerror is the calculated value of the series
capacitance,Cerror is the error in the calculation due to discretization given
by (1). Adding�Cerror removes this error.

the case of the series MIM capacitor, this results in a model
which is compensated for errors due to discretization, as shown
in Fig. 6. Alternatively, the size of the capacitor (either as
analyzed or as fabricated) can be modified to compensate for
analysis error. Of course, if extremely accurate results are
needed, a convergence analysis should be used.

For the purposes of this paper, simple rectangular geome-
tries have been studied, but there is no indication that this is
a limitation of this type of analysis. For arbitrary shapes of
capacitors, convergence of the error can still be tracked and
extrapolated as was done for the rectangular capacitors.

III. COMPARISON WITH ANALYTICAL TECHNIQUES

The capacitance of a parallel-plate capacitor including
the fringing capacitance can be calculated by modifying
the method used in [6] and [7] where the parallel-plate
capacitance is augmented by the capacitances due to the
edges. This is done by considering the capacitor to be a
degenerate transmission line and calculating the characteristic
impedance and effective dielectric constant for the two types
of lines formed by the edges of a MIM capacitor (using

or by some other means). The total capacitance for each
transmission line can then be calculated. For this case, the
two different types of transmission lines formed by the edges
of the MIM capacitor (in Fig. 1) are parallel-plate for the

-dimension and microstrip for the-dimension, yielding

(5)

for the - and -dimension total capacitances, respectively,
where is the phase velocity of light in vacuum,
are the characteristic impedance and the effective dielectric
constant for the microstrip-like edges, and are those
for the parallel-plate edges of the capacitor.

The fringing capacitance per edge is then given by

(6)

for the microstrip and parallel-plate transmission-line parts of
the capacitor where

(7)

is the parallel-plate capacitance. Then the total capacitance
(neglecting corner capacitance) is

(8)

which, when applied to the air dielectric case, gives a value of
22.191 pF and is in close agreement with the calculated
value including the error correction, which is 22.240 pF,
leaving approximately 0.049 pF (0.22%) due to corner
capacitance and error other than discretization error.

IV. SUMMARY

As stated in [6], it is important to consider the cell size used
in an electromagnetic simulator since computer time increases
rapidly with the number of cells. Without quantitative knowl-
edge of the error versus cell-size tradeoff, the designer does
not know if a given cell size yields sufficient accuracy or if it
is “overkill” resulting in a long simulation time. The authors
believe there may be many more applications of Richard-
son extrapolation in the analysis of error in computational
electromagnetics, as was also pointed out in [10].

The error model described in this paper can be used: 1)
to select a discretization for a desired accuracy level and 2)
to reduce the error for a given discretization by subtracting
the error capacitance from the calculated value. The technique
described allows a designer to achieve the desired level of
simulation error while also realizing the minimum possible
simulation time.
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