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Techniques for Correcting Scattering Parameter Data

of an Imperfectly Terminated Multiport When

Measured with a Two-Port Network Analyzer

JAMES C. RAUTIO, MEMBER,IEEE

Abstract —Two techniques are described which correct scattering

parameter data taken on an N-port device measured with N-2 imperfeci

terrniuations and a two-port network mudyzer. The first techniqne rises a

simple iterative afgorithm and may he easily implemented in software. Each

iteration reduces the error due to imperfect terminations typicafly by one

decade. The second, more complicated, technique uses a generaf closed-form

solution which requires speciafly developed Gamma-R parameters of which

S-, Y-, and Z-parameters are particular cases. The cfosed-form solution is

completely vaEd for any termination. The closed-form solution is the fimit

to which the iterative solution converges.

The iterative technique has been implemented in software controlling ass

HP 8409 automated microwave network analyzer.

1. INTRODUCTION

When measurements are required of three-port ~-parameters,

the usual technique is to terminate each port, in turn, with a

reflectionless load and make three separate two-port measurem-

ents. The configuration for the first measurement is shown in

Fig. 1. l%e two-port automated network analyzer (ANA) maybe
considered nearly perfect if one of several correction algorithms
[1]-[4] is used. All nine required three-port S-parameters (with
some redundancy) may then be selected from the three two-port
measurements. The technique may be extended to N-ports with
N( N- 1)/2 two-port measurements required. When imperfect loads
are used, the resulting two-port S-parameter data will be cor-
rupted. The error introduced can be removed by a closed-form
technique which has been applied to the “ Thru-Short-Delay”
technique [3], [4]. A rigorous closed-form technique which uses
S-parameters normalized to a emnplex impedance has been de-
scribed by Tippet and Speciale [24]. Their solution will remove

errors introduced by imperfect terminations. However, they state

that their technique is limited in the number of perfectly reflect-

ing terminations which may be used.

In this paper, an iterative solution and a new simple closed-form

solution will be described. The iterative approach has the ad-

vantage of being extremely simple and easily programmed. The

closed-form solution, while more elegant than the iterative solu-

tion, is less flexible and requires some matrix inversion. Fewer

complex matrix inversions and muhiplications are required than

in [24]. The solution introduces Gamma-~ parameters which are

similar to S-parameters normalized to an arbitrary impedance

[6]-[12] except that Gamma-1? parameters do not degenerate for

short or open circuits. Thus, the closed-form solution maintains

full validity at and in the vicinity of high reflection terminations.

The techniques described in this paper will not remove mea-

surement errors introduced by imperfections in the two-port

ANA itself.

II. THS ITERATIVE SOLUTION

If the true N-port data are known, the resulting measured

two-port data are easily calculated [14], [ 17]–[20]. For example,
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Fig. 1 Measurement setup to obtain the first four of nine three-port S-
parrmreters. The measured data win be corrupted by the imperfect load.

SUBRIJUTINEECOR7(Sf4,CwlM,SC)
c**** *****************************~************ ***** x*******************
c S409 ANA SUBROUTINEECOR7
c Th%s subroutine ca?rects the ,meesu~ed 3-port data In SM for the
c @f?@ct O? the imperfect twmination, CAM Th@ co fw. scted data IS

c rutu?ned in SC SH and SC must occupq phqsicallq distinct areas
(! i “ m-m”-,’. . ..-. . .
i WRITTEN SY J. RAUTIO 9 APR S2 REVISION A-1
c**** ***** ***** ****** ***** **************+******,************************

c
COfiPLEX*8 SH ( 9 ) ,

& SC(9),
& SE(9),
& QAM

LNTEOER*2 11(9,3) ,

& 1, 1s
c
c INOEX -- 1 2
c S-PARAti -- S11 S21

DATA M/ 7, s,
& 3, 3,
& 9, 9,

1 Heasuved 3-port data (column maJor order)
I Correctmd 3-port data
r C.rre”t .stimate .+ true 3-p. ~t data
1 Reflects.an coefficient of tarmtnatxon
1 S-parameter xndxces for calculating ● rror,
1 dependent on how dwic. was measured
8 Do loop ind<ces

34567S 9
S31 S12 S22 S23 S13 S23 S33

& 7, s, 3, 4s 2, 6, I Sxt
2, t., 6, 4, S, 7, S, , %J
5, 9, 9, 1, 5, 1, 5/ , Stt

G
c Us@ the measured data as the first ●stlmato of the tru@ data

00 100 1S=1, ‘$
SE(IS)++l(IS)

100 CONTINUE
c
c Usang SE as an es+smate of the true data, subtract the calculated
c .ffect O* the load fvom th. m.as.v. d data and place the %mpv.ved
c estimate of thm data in SC Do thxs SIX times

00 200 1=1,6
c Co thru @ach S-parameter

Do 210 1s=1, 9
SC( IS)- 5fl( Is) - SE(f4(1S, l))* SE(M(19,2))*QAM/

& (CHPLX(l. >0 )-SE(M[1S,3))*QAH)
210 CONTINUE

c Use SC as ths new ●stxmate of the true S-parameters
DO 220 1S=1, 9

SE(IS)=SC( IS)
220 CONTINUE
200 CONTINUE

RETURN
ENO

Fig. 2 Excluding comment, common, data, etc., statements; the iterative
algorithm may be implemented with seven lines of Fortran.

given a three-port with port 3 terminated in a load (reflection
coefficient = r~ ) the resulting two-port S1, will be

3S133S31 r3%,,=%1,+
1–3s33r3

or, more generally

%,t%t,q
2s =%,1+IJ I – 3st,rt

where Si j is the S-parameter being measured, and t is the

terminated port. The left-hand side of the above equations is the

two-port S-parameter measured by the ANA. The first term of

the right-hand side is the true three-port S-parameter. The seeond

term is the error caused by the imperfect load.

0018-9480/83/0500-0407$01 .00 @1983 IEEE
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Solving for the first term of the right-hand side

3s,,= 3,1–
%Z;S,JI’,

I – 3s,,r, ”
(1)

This equation (or actually, nine equations, one for each of the

three-port S-parameters) gives the true three-port data as a

function of the measured two-port data, the measured imperfect

load, and the unknown three-port data. This is a set of nine

simultaneous equations in nine variables. A simple iterative tech-

nique may be used to solve the equations. The unknown three-port

data in the right-hand side error term may be estimated by the

measured two-port data. Equation (1) is then evaluated to yield

an improved estimate of the true three-port data. This improved

estimate (of all nine S-parameters) is then used to re-evaluate (1)

to yield an even better estimate of the three-port data. Typical

results show the error (rms difference between the old and new

estimate) decreases by one decade for each iteration. The Fortran

source for this error-correction algorithm is shown in Fig. 2.

Ignoring common, continue, data, and comment statements, the

algorithm uses seven lines.

III. EXTENSION TO FOUR-PORTS

The equation corresponding to(1) for four-ports may be found

several ways

?s,,=%,,-

17]–[20]~ the technique described by Otoshi [17] is

S,,st, – s,tst,rr St, 1– sttr,
r, s I – s,,r, + r,

r] – S,rsrl s,rsr,rr

II- st,rt - sr,rr I
I - sr,r, 1 – srrrrl

where S,J is the S-parameter being measured, t is the first

terminated port (l–4), and r is the second terminated port (1 –4).

The vertical bars indicate determinants, and all S-parameters in

the determinants are four-port S-parameters.

The same iterative algorithm can then be used. The extension

to N-ports is straight forward. Measurement of more than four

ports may become cumbersome.

IV. EXTENSION TO SHORT CIRCUITS

Short circuits, rather than loads, may be used when it is

realized that while a reflectionless load will allow accurate mea-

surement of three-port S-parameters on a two-port ANA, a

perfect short will allow measurement of three-port Y-parameters

on a two-port Y-parameter ANA. While a Y-parameter ANA

does not exist, it is simple to convert the measured S-parameters

to Y-parameters [5], [15], [21]

1 1–s

‘=~l+s

where S is the N x N S-parameter matrix, Y is the N x N

Y-parameter matrix, and ZO is the system impedance (usurdly 50

Q). It is pointed out in [5] and [15] that

(1- A)(I+’4-’ =(1+ A)-’(A)A)

for any A, thus the form above.

Conversion back to S-parameters is

1 – ZOY

‘=l+ZOY”

Computation time will be saved if one uses normalized Y-param-

eters ( ZO = 1) for all calculations.

The same iterative correction algorithm may be used with

Y-parameters if one substitutes Y-parameters for S-parameters

and – Z (input impedance of the short) for rL.

The measurement algorithm for shorts may be summarized as

follows.

1) To measure an N-port, first measure N-2 short circuits,

calculate minus the input impedance, and store in memory.

2) Measure the S-parameters of the required two-ports using

the N-2 shorts to terminate unused ports.

3) Convert the two-port S-parameters to Y-parameters.

4) Correct the measured Y-parameters for the effect of imper-

fect shorts using the iterative algorithm.

5) Convert the resulting corrected N-port Y-parameters to

S-parameters.

In certain situations, this algorithm yields unacceptable errors

which are thought to be due to difficulty in measuring the high

reflection termination. A similar technique using open circuits

and Z-parameters would also be possible but has not been

explored.

V. lln? CLOSED-FORM SOLUTION

As noted above, one may measure the S-parameters of an

N-port using a two-port S-parameter ANA and N-2 reflectionless

loads. Similarly, one may use N-2 perfect short circuits to mea-

sure Y-parameters on a Y-parameter ANA or N-2 perfect opens

and a Z-parameter ANA. We can create a Y-parameter ANA by

measuring S-parameters and converting the S-parameters to Y-

parameters. The same is true for Z-parameters. In a similar

manner, it is possible to do this for any arbitrary termination

using Gamma-1? parameters.

The Gamma-~ parameters (derived in Appendix I) use a linear

combination of the incident and reflected waves as terminal

variables. The combination, which may be different for different

ports, is chosen such that the appropriate terminal variable will

go to zero when the termination (with any fixed reflection coeffi-

cient) associated with the port is attached. A special case would

be the reflected wave going to zero when a reflectionless load is

attached or the terminal voltage going to zero when a perfect

short is attached.

The algorithm for measuring N-ports will be the following,

1) Measure N terminations. Each termination will be associ-

ated with a specific port.

2) Measure N(N- 1)/2 two-ports. Create each two-port by

connecting N-2 of the N terminations to the N-port. Be sure each

termination used is connected to its associated port.

3) Convert each of the two-port S-parameters to Gamma-1?

parameters as follows:

~=(r*+s)(l–rs)-’.

Definitions are in Appendix I and the derivation is in Appendix

II. The Gamma matrix will be the N x N Gamma matrix with all

rows and columns corresponding to the terminated ports

eliminated.

4) Fill the N X N Gamma-~ matrix with the Gamma-1? param-

eters measured from the two-ports.

5) convert the finaf N X N Gamma-l/ matrix back to S-param

eters as follows:

s=(l+m-’(zt-r *).

Definitions are in Appendix I and the derivation is in Appen-

dix II.
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Use of similar normalized S-parameters for ANA accuracy

enhancement has been discussed [13], [22], [23], [24].

VI. RELATIVE MERITS

The closed-form solution can allow for any termination reflec-

tion coefficient on any port. The iterative method requires some-

thing close to a load. However, the iterative solution can handle

the terminations comected in any sequence to any of the ports,

as long as the exact sequence is known to the correction algo-

rithm. The closed-form solution requires that each port be

terminated by the same termination each time it is terminated. It

is not possible to terminate, say, port 3 with one termination and

later terminate port 3 with a different termination when using the

closed-form solution. This is not a difficulty when measuring

three-ports because each port is terminated once. Only one

physical termination is required. However, a four-port requires

four physically distinct terminations to meet the above require-

ments. In contrast, the iterative technique requires only two

physically distinct terminations.

VII. SOME PROPERTIES OF THE GAMMA-R PARAMETERS

By noting that the port current i = a – b and the port voltage

u = a + b, we CM-I see (2) that for I’ = – 1 (short circuit), IX= o

and ~ = – i. Thus, the Gamma-R parameters become normalized

( ZO = 1) Y-parameters with a change of sign. Also, if r = 1 (open

circuit), we have a = i, ~ = v and normalized Z-parameters result.

For r = O, S-parameters result. Thus, S, Y, and Z are rdl special

cases of Gamma-R parameters. Note that the conversion equa-

tions (4) and (5) then simplify to conversions between S, – Y,

and Z.

For a 2X 2 Gamma-R matrix, it may be easily shown that if

r, = O and I’z = rL that R,, will” be the resulting S1, of the

two-port terminated in 17L.

Finally, for 1’1= r~ (generator) and rz = rL (load)

IR2J2 =
ls2,12(l-lrL12)

III – sl,rG)(l – s22rL)–s,2s2,rGrL12

or the power transfemed from the generator to the load [16].

VIII. CONCLUSION

A simple iterative technique has been described which corrects

the scattering parameter data of an imperfectly terminated multi-

port device measured using a two-port ANA. The iterative algo-

rithm is fast, flexible, ti.nd quickly implemented in software.

Alternatively, a new closed-form solution may be used to

correct the measurements. This solution requires fewer complex

matrix inversions than a previous closed-form solution [24] and is

completely valid for perfectly reflecting terminations. The new

closed-form solution introduces Gamma-R parameters.

Except for measurements using arbitrary (e.g., high reflection)

terminations, the iterative solution appears to be more desirable

due to its simplicity.

APPENDIX I

DERIVATION OF THR GENERALIZED GAMMA-R PARAMETERS

We wish to derive an N x N matrix R which will describe an

N-port using a and P as terminal variables

aT=(al, a2, ..-, aN) pT=(/3,,l?~,. ..,&), $=Ra

aT=(al, a2,. . .,a~) b~=(bl, bz, -.., b~), b=Sa.

We will choose a and ~ to be linear combinations of a and b,

the incident and reflected waves. The linear (and generally com-

plex) combination will be defined as

a= Aa+Bb, e.g., a, =A, a, + B,b,

$= Ca+Db, e.g., &= C,al+D, b,

where A, B, C, and D are diagonal matrices of complex constants

1
Al

A2 o
A= i etc.

We will outline the gamma matrix as

‘1
r,

r= r2

\ ‘o

We wish to select A, B, C, and D
when I’, is used to terminate port i.

Further, we will specify that

AN J

\

o

rN ,

such that a, will go to zero

(JAi
1) (.4 T, B:) B =l+lrllz, 16i<N

()

c,
‘2) (c:, D:) D =l+lr112, l<i<N

1

()

c,
3) (A; ,B:) D =0,

1
l<i<N.

Conditions 1 and 2 are a convenient normalization. Condition 3

is an orthogonality condition which results in maximum informa-

tion in the R matrix. At the other extreme, if A, = C, and B, = D,,
then the R matrix would be a unit matrix regardless of the N-port

being described. This is, in fact, the situation if r = – 1 when

using S-parameters normalized to a complex (0) impedance

[6]-[12].

When the i th port is terminated, we have

a,=17, bL.

Under this circumstance, we want

a,= A,a, +B, b,=O

=A,r, b,+ B,b, =O

A, I’, =-B,.

One solution satisfying the first normality condition 1 is

A,=l ~,=–r,.

By the second normality condition 2 and the orthogonality condi-

tion 3

cl=r: D,=l.

Since this is true for any port i we have

A=l B=–r
c=r* D=l

and

a=a–17b B=r:. A. (2)
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APPENDIX II

CONVERSION BETWEEN GAMMA-R AND S-PARAMETERS

The Gamma-R parameters and S-parameters are defined as

$=Ra b=Sa

with a and ~ defined in (2) as

(l_’*a+ b)= R(a-l_’b)

(r*a+Sa)=R(a-lYa) (3)

(r*+s)=R(l-rs)

(r*+s)(l–rs)-’=R. (4)

To convert from Gamma-R to S, we start with (3) and proceed

p*+s)=(~-zm)
R–r*=s+Rrs

R–r*=(l+Rr)s

(l+ Rr)-’(R-r*)=s. (5)

If all r, are equal, the matrix multiplication in (4) and (5) is

commutative.

[

(0.2739, -0.0994) (0.7540,

(0.7540, -0.1735) (0.1878,

( –0.0328, 0.0335) ( –0.0423,

The first iteration provided

The second iteration gave

A

T

lPF

r ,P!-’3
‘on

fO=l. CGHz

=

Fig. 3. TIus circuit is used to demonstrate both the iterative and closed-form
solutions.

Matrix M2 was calculated with port 3 terminated in 40 + jlOfl

(r~ = – 0.0976 + jO. 1220) with port 1 as input and port 2 as

output. Matrix M3 used a 70 + jO-i2 load on port 2 with port 1 as

input (rz = O.1667+ jO.0) and port 3 as output. Matrix M4 had

port 1 terminated with 60+ j1052 (r, = 0.0984+ jO.0820) with

port 2 as input and port 3 as output.

The three “measurements” were combined to form the “mea-

sured” three-port matrix. When possible, the worst data was

selected

–0.1735) ( –0.0328, 0.0335)

)

–0.1294) ( –0.0423, 0.0456) (M5)

0.0456) (0.7636, -0.4974)

, –0.1738) (–0.0288, 0.0262)

[

(0.1823, -0.0524) (0.7537,

(0.7537, -0.1738) (0.1110, -0.1495) (-0.0377, 0.0441)

( –0.0288, 0.0262) ( –0.0377, 0.0441) (0.7637, -0.4967)

[

(0.1838, -0.0526) (0.7538, -0.1737) ( -0.0294, 0.0266)

(0.7538, -0.1737) (0.1120, -0.1489) (-0.0385, 0.0446)

(– 0.0294, 0.0266) ( –0.0385, 0.0446) (0.7637, -0.4968)

(M6)

(M7)

APPENDIX 111
The third iteration result was identical to the original matrix, Ml.

NUMERICAL RESULTS
The circuit of Fig. 1 was also used to illustrate the closed-form

solution. The terminations were chamzed to r, = 0.6.z35°. 17,=
This section will provide specific numerical examples of both

,A
+ 1, 17g= – 1. The “measured” data then becomes

the iterative and closed-form solution. These examples will facili-

tate the verification of software using these techniques.

(

(0.1834, -0.0519) (0.7535, -0.1725)

The circuit in Fig. 3 was analyzed with the assistance of a (0.7535, -0.1725) (0.1117, -0.1471) )

(M8)

computer. The true S-parameter matrix at 1 GHz is

[

(0.1837, -0.0527) (0.7538, -0.1737) (-0.0293, 0.0265)

(0.7538, -0.1737)

)

(0.1120, -0.1490) (-0.0384, 0.0446) . (Ml)

( QO.0293, 0.0265) (– 0.0384, 0.0446) (0.7637, -0.4968)

To demonstrate the iterative technique, each port was

(

(0.7249, -0.4383) ( -0.0451, 0.0746)
terminated, in turn, by an imperfect load. The resulting calcu-

( -0.0451, 0.0745)
\

lated S-parameter matrices correspond to ANA measurements.
(0.7625, -0.5004) ) ‘M9)

The resulting three “measured” two-ports are

(

(0.5063, -0.0691) (-0.0580, 0.0509)

(

(0.1839, -0.0525) (0.7540, -0.1735)

)

(M2)
( -0.0580, 0.0509) )(0.7645, -0.4976) ‘MIO)

(0.7540, -0.1735) (0.1124, -0.1486) where matrices M8, 9, and 10 are analogous to matrices M2, 3,

(

(0.2739, -0.0994) ( -0.0328, 0.0335) ~M3)

)

and 4.

Matrices M8, 9, and 10, when converted to Gamma-R parame-

(-0.0328, 0.0335) (0.7636, -0.4974) ters, using (4), become

(

(0.1878, -0.1294) (-0.0423, 0.0456)

) (

(2.5667, - 1.3872) (3.2958, - 1.0764)

( -0.0423, 0.0456) (0.7639, -0.4969) “ ‘M4) (2.2411 , -0.7319) (2.9694, -0.5303) )

(Mll)
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Fig. 4. The measured data is different f~om the true data by the measure-

ment error E. The estimate of the error 1? is used to create an estimate of the

true data.

( (2.5669,-1.3874) (-0.1499, 0.1202) ~M12)

(–0.1019, 0.0818) (–0.0464,–0.3021)
)

( (2.9695,-0.5304) (-0.1411, 0.0921)

)(-0.1412, 0.0921) (-0.0463,-0.3021) “ ‘M13)

Combining Ml 1, 12, and 13, we form the overall 3 X 3 Gamma-R

matrix

[

(2.5666, - 1.3872) (3.2957,

(2.2411, -0.7319) (2.9695,

(–0.1019, 0.0818) (–0.1412,

Conversion of the 3 X 3 Gamma-R matrix, M14, to S-parameters,

using (5) yields the S-parameter matrix, Ml.

All above calculations are single precision; accumulated round-

off error may change the last digit.

APPENDIX IV

CO~RGENCE OF THE ITERATIVE ALGORITHM

As illustrated in Fig. 4, the iterative algorithm will form an

estimate ~ of the actual error E. The estimate of the error will be

subtracted from the measured data to form a new estimate of the

true data. If the new estimate of the true data is closer to the true

data (i.e., if IE – Al< IEI) then the algorithm will converge.

The condition for convergence can also be stated as

k
– <2 COS0,
E

This condition will restrict lE – Al to within a circle of radius I.E

and centered on the true data.

The true error E and the estimate ~ for a three-port are

E= s,s2r ~= (S, +e,)(S2+e2)r

l–s~r l–(S3+e3)r

where S1, S2 are the transmission S-parameters, S3 is the reflec-

tion S-parameter, e,, ez, es are measurement errors, and r is the

reflection coefficient of load.

The convergence condition becomes

E (S, + e,)(S2+ e2)(l-s31’) ~2coso
—=
E S, S2[l–(S3+e3)r] “

Remember that O (Fig.”4) is arg(~/E).

We will investigate the worse case when all transmission

parameters have a magnitude equal to the largest magnitude T,

and all reflection coefficient magnitudes are equal to the largest

magnitude R. If any S-parameter magnitude is in fact less, then

the maximum errors in the measured data will be less and the

algorithm will be inherently more stable.

Further, the worst case will occur at 13= O provided that

Iell< ISII le21< Isql Ieqrl< p-s~rl.

This may be seen by drawing a vector diagram of S1, e,, and

S1 + e,. At the worst case, tJ = O and S1 and e, will be in the same

direction to maximize the error. Any change in arg( el ) will then

cause 1S1 + e, 1to decrease more rapidly than 2 cos ( O).

Now, using the worst case and forcing r to be real (by shifting

the reference rknek we may calculate the largest value of I’

which wi

max

I gua&te~’that I~/El <2 at O = O -

T2r

maxlell= l_ ~r

i _ (l+(z--R)r)2 <2
r<l/(R+3z’) ,

Z - (1-m) 2-~2r2 ‘

If we assume a passive three-port (i.e., T= R = 1), then the

iterative algorithm is guaranteed to converge monotonically for

lrl <0.25. Numerical simulation confirms this and, in fact, the

iterative algorithm simulation will converge for the worst case

with 117I <0.28, although not monotonically. It should be em-

- 1.0764) (–0.1499, 0.1202)

I

-0.5303) (–0.1411, 0.0921) . (M14)

0.0921) (–0,0464, –0.3021) ,

phasized that the worst case will almost never be seen in mea-

sured data, and loads with larger reflection coefficients will

nearly always allow convergence, especially if only one of the

S-parameters is as large as R or T.

The numerical simulation also suggests a simple test for con-

vergence. When the algorithm failed to converge, it would alter-

nate between two widely separated points or diverge. Thus a

sufficient test for convergence may be to note when the difference

between successive iterations is negligible.
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Low-Noise, Low Power Dissipation GaAs Monolithic

Broad-Band Amplifiers

KAZUHIKO HONJO, TADAHIKO SUGIURA, TSUTOMU

TSUJI, AND TOSHIHARU OZAWA

Abstract —Low-noise, low dc power dissipation GSAS monofitbic ampli-

fiers have been developed for use in VHF-UHF mobile radio systems. The

developed amplifiers have two-stage constmetion, where gate width for the

first stage is 1000 pm, and for the second stage is 500 pm. Using this

circuit configuration, both noise figure and bandwidth have been improved.

To maintain the uniformity for the ion-implanted active layers and to

reduce gate-source resistance R ~ and gate-drain resistance R ~, the

“closely spaced electrode FE’r” was adopted. The FET enables low drain

voltage operation, resulting in low dc power dissipation.

The developed amplifier for the FET threshold voltage VT= – 0.6 V

provides a 3-dB noise figure, less than 170-mW dc power dissipation,
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9-MHz-3.9-GHz bandwidth with 16-dB gain. It can operate under a

unipobir Wwer source. When extemaf choke inductors were introduced for

the amplifier, 120-mW dc power dissipation has been achieved. It has also

been demonstrated that the amplifier for VT= – 0.6 V, which is inferior to

the ampfffier for VT= – 2.7 V regarding gain-bandwidth product and power

efficiency under the same dc power dissipation, however, has an acceptable

performance for use in the mobile radio systems.

I. INTRODUCTION

Recent advances in GUAS IC technology make it possible to

develop multistage GaAs monolithic broad-band amplifiers for

general purpose utilization. Expected application fields for the

amplifiers are the following:

1) 1-GHz and 2-GH2 baud mobile radio system;

2) 1.6= Gbit/s data rate optical communication system;

3) 3-GHz band phased array radar system;

4) intermediate frequency section in microwave communica-

tion system;

5) VHF–UHF television.

For these applications, low input and output VSWR, low-noise

figure, low dc power dissipation, and high gain are required over

a wide frequency range, where there are tradeoff relations among

the amplifier characteristics.

Especially in the mobile radio systems, low dc power dissipa-

tion (below 150 mw) is a basic requirement for low-noise (less

than 3-dB noise figure) broad-band (up to 3 GHz) amplifiers.

However, dc power dissipation for the reported amplifiers was as

high as 300 mW to 1600 mW [1], [3]–[6]. In addition, the noise

figure was not low enough [1], [3], [4], bandwidth was not

sufficiently wide [3], [5], [6], and input VSWR was not reduced

[5], [9]. Accordingly, to realize GaAs monolithic broad-baud

amplifiers for use in mobile radio systems, a low dc power

dissipation technique has to be developed, considering noise

figure, bandwidth, gain, and VSWR. In addition to this, if

possible, realizing a unipolar power-source operation for the

amplifiers makes them very useful, from a practical point of view.

This paper describes design considerations and performances

for newly developed low-noise, low power-dissipation GaAs

monolithic broad-baud amplifiers for use in VHF–UHF mobile

radio systems. It will be shown that, by using the achieved

theoretical results which have already been published [1], both

noise figure and bandwidth can be improved. The developed

amplifiers have two-stage construction, where gate width for the

first stage is 1000pm and that for the second stage is 500 pm. In

amplifier fabrication, to improve uniformity for FET active layers

and resistive layers, an ion-implantation technique was intro-

duced. The so-called “closely spaced electrode FET” structure,

which has been developed for E/D-type GaAs digital IC’S [8] in

the NEC Research Laboratones, is adopted so that both

gate–source resistance R, and gate–drain resistance R ~ can be

reduced without recessing the gate. By reducing R~ and R ~, the

FET’s can operate under low drain voltage with appropriate

transconductance g~, resulting in low dc power dissipation. The

nonrecessed FET’s maintain uniformity for the ion-implanted

layers.

Also, two GaAs monolithic amplifier categories, one for uni-

polar power-source operation (needs only positive bias supply,

+ v~), the other for bipolar power-source operation (needs both

negative and positive bias supply, – P& and + V~ ), are discussed

comparatively. It will be demonstrated that the unipolar power-

source amplifier, which is inferior to the bipolar power-source
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