

 SonnetLab Single Stub Tutorial

 By Bashir Souid

This work was supervised by Dr. Serhend Arvas.

In this tutorial we will build a single stub Sonnet project and simulate it.

The .m file for this tutorial can be found in

< SonnetLab directory>\Tutorials\Single Stub\Single Stub.m

The first thing we do in this tutorial is create a new Sonnet project. The command to make a new

Sonnet project is SonnetProject(). The following command will make a new Sonnet project object

and store it within the variable 'Project'.

Project=SonnetProject();

Now that the new project has been created Matlab can interact with it through the variable 'Project'.

The new Sonnet project has the same parameters as a new project created with Sonnet. When

creating a new Sonnet project in the Sonnet editor or with SonnetLab some aspects of the project

must be specified by the user before the project can be simulated. One aspect of the Sonnet project

that must be set is the thicknesses for the dielectric layers. A new Sonnet project will have two

dielectric layers but neither will have a value for thickness; these values must be specified by the

user. The thickness of the two dielectric layers can be changed with the following lines:

Project.changeDielectricLayerThickness(1,50);

Project.changeDielectricLayerThickness(2,5);

The first command changes the thickness of the first dielectric layer to a value of 50. The second

command changes the thickness of the second dielectric layer to a value of 5. The units are

specified globablly for a project (default is mils).

Now that the Sonnet project has valid dielectric layer properties our next step is to add the desired

polygons to our project. The easiest way to add metal polygons to a Sonnet project is with the

addMetalPolygonEasy() method. The addMetalPolygonEasy() method requires three arguments

and may optionally take a fourth argument:

1. Metalization level index

2. The vector of X coordinate values

3. The vector of Y coordinate values

4. (Optional) The type of metal

In this tutorial we will not use the optional argument for the addMetalPolygonEasy() method. This

argument is explained and used in the second single stub tutorial. Because we did not specify this

term the polygon is made out of lossless metal.

Sonnet projects with two dielectric layers have one metalization level. The first metalization level

in a project is level zero. In this example there is only one metalization level so we will place our

new polygons on level zero. The addMetalPolygonEasy() method also requires two vectors that

specify the coordinates for the polygon verticies. The coordinates may be specified in either the

clockwise or counterclockwise direction. The Sonnet project file format specifies that the last edge

in a polygon must return to the first vertex of the polygon in order to close the shape. When using

the addMetalPolygonEasy() method if the user doesn't close the polygon the method will do so

automatically.

The layout this tutorial will implement will be to place a throughline along the width of the box and

have a stub extend from the middle of the throughline towards the top of the box. A via to ground

will be attached to the stub. The vertex coordinate vectors for the throughline are the following:

anArrayOfXCoordinates=[0;160;160;0];

anArrayOfYCoordinates=[130;130;150;150];

The throughline can be added to the project with the following call to the addMetalPolygonEasy()

method:

Project.addMetalPolygonEasy(0,anArrayOfXCoordinates,anArrayOfYCoordinates);

The same sequence of commands may be used to create the stub:

anArrayOfXCoordinates=[70;90;90;70];

anArrayOfYCoordinates=[130;130;20;20];

Project.addMetalPolygonEasy(0,anArrayOfXCoordinates,anArrayOfYCoordinates);

In this design we will add a square via polygon to the end of our stub; this can be accomplished

using the addViaPolygonEasy function. The addViaPolygonEasy() method requires three values

and may optionally take a fourth argument:

1. Metalization level index

2. The level the via is attached to

3. The vector of X coordinate values

4. The vector of Y coordinate values

5. (Optional) The type of metal

In this tutorial we will not use the optional argument for the addViaPolygonEasy() method. This

argument is explained and used in the second single stub tutorial. Because we did not specify this

term the polygon is made out of lossless metal.

In this example we want our via polygon to run from metalization level zero to the ground plane so

we will specify the value for the second argument to be 'GND'. The second argument could also be

a number to indicate another level. For example if a user wanted to connect a via between level

zero and one they would specify the second function argument to be the number one. The

commands to add the via polygon are displayed below:.

anArrayOfXCoordinates=[70;90;90;70];

anArrayOfYCoordinates=[20;20;40;40];

Project.addViaPolygonEasy(0,'GND',anArrayOfXCoordinates,anArrayOfYCoordinat

es);

With our polygons in place we may proceed to adding ports to the throughline. SonnetLab has

serveral methods for adding ports to projects; one of the easiest approaches is the

addPortAtLocation() method.

The addPortAtLocation() function takes an (X,Y) coordinate pair as arguments and attempts to

place a port at the nearest polygon edge. In this tutorial we want to add a port to the throughline at

location (0,140) and another port at location (160,140). These two ports can be added with the

following lines:

Project.addPortAtLocation(0,140);

Project.addPortAtLocation(160,140);

Congradulations! The layout for the single stub circuit is complete. Although the components of the

circuit have been created there are a few more steps that need to be taken before we can simulate

the project.

Before the project can be simulated the user must first specify the frequency sweep settings. In this

tutorial we will simulate the project using Sonnet's ABS simulation routine. The two arguments

that the ABS routine needs is a start frequency value and a stop frequency value. The command to

add an ABS frequency sweep from 5Ghz to 10Ghz is the following:

Project.addAbsFrequencySweep(5,10);

When a new project is created using SonnetLab it will need to be saved to the hard drive before it

can be simulated. The first time a user wants to save a particular Sonnet project to the hard drive

they must specify a filename for the project; this can be accomplished using the saveAs() method as

follows:

Project.saveAs('SingleStub.son');

The above command will save the Sonnet project specified by the variable Project to the hard drive

as 'SingleStub.son'. After the user does a single saveAs() command they are then able to use the

save() command which will save the file to the hard drive using the same filename that was

specified by the most recent call to saveAs(). If a Sonnet project file is opened from the hard drive

(rather than being created from scratch from within Matlab) the user does not need to call saveAs()

in order to specify a filename for the project file; the save() function will overwrite the read project

file. At any time any Sonnet project may be saved with saveAs() in order to specify a different

filename; the result of which will also cause all later calls of save() to be saved to the new filename.

Now that we have specified the simulation settings we can call Sonnet's simulation engine to

simulate the project using the command:

Project.simulate();

When the simulation is complete the user may examine the results using the Sonnet response

viewer. SonnetLab can automate opening the Sonnet response viewer with the following

command:

Project.viewResponseData();

