
DStub Tutorial

Version 1.1

100 Elwood Davis Road ♦ North Syracuse, NY 13212 ♦ USA

SonnetLab DStub Tutorial
©2011 Sonnet Software, Inc.

Sonnet is a registered trademark

of Sonnet Software, Inc.

Specialists in High-Frequency Electromagnetic Software

(315) 453-3096 Fax: (315) 451-1694 http://www.sonnetsoftware.com

http://www.sonnetsoftware.com/

DStub Tutorial

Version 1.1

This tutorial will mimic the design approach used in chapter 5 of the Sonnet "Getting Started

Guide". The guide demonstrates a lot of the core functionalities of the Sonnet circuit designer. This

tutorial follows all the steps completed in the "Getting Started Guide". There are points where

Sonnet's guide will make a change to a project and then change it back to its original setting; this

tutorial will also make both changes in order to show the user how to complete those operations in

SonnetLab.

The .m file for this tutorial can be found in

<SonnetLab directory>\Tutorials\DStub\DStub.m

The first thing we do in this tutorial is create a new Sonnet project. The command to make a new

Sonnet project is SonnetProject(). The following command will make a new Sonnet project object

and store it within the variable 'Project'.

Project=SonnetProject();

Now that the new project has been created Matlab can interact with it through the variable 'Project'.

The new Sonnet project has the same parameters as a new project created with the Sonnet GUI.

New Sonnet Projects have a box size of 160 by 160 mils. In this tutorial the first thing we want to

do is change the box size for our project to be 330 by 200 mils. This change can be made with the

following command:

Project.changeBoxSize(330,200);

The default cell size for a new Sonnet project is 10 by 10 mils. We want our design to have a cell

size of 10 by 10 mils so no change to the project is necessary. Although the cell size does not need

to be set this tutorial will present the way to change the cell size. The following line will explicitely

set the cell size of the project to 10 by 10 mils by modifying the number of cells:

Project.changeCellSizeUsingNumberOfCells(10,10);

When the cell size is changed either the size of the box or the number of cells in the box must

change in order to realize the new cell size. In most cases it is desireable change the cell size by

changing the number of cells that span the length and width of the box.

One of the first things a designer will typically modify for a design is the settings for the dielectric

layers. A new Sonnet project will have two dielectric layers but neither will have a value for

thickness; the thickness must be specified by the user. The thickness of the first dielectric layer can

be changed with the following line:

Project.changeDielectricLayerThickness(1,20);

The above command changes the thickness of the first dielectric layer to a value of 20. The units

are specified globablly for a project (default is mils).

DStub Tutorial

Version 1.1

We would like the second layer of our project to have the following settings:

 Name: Alumina

 Thickness: 20

 Erel: 9.8

 Dielectric Loss Tangent: 1.0e-4

 Dielectric Conductivity: 0.0

 Mrel: 1.0

 Magnetic Loss Tangent: 0.0

The easiest way to change the second level of our project to be the above values is to delete the

second layer that was automatically generated for our project and add a new level with the desired

values to the project. The second level can be deleted with the following command:

Project.deleteLayer(2);

A layer with the desired properties can then be added to the project using the following command:

Project.addDielectricLayer('Alumina',20,9.8,1,1.0e-4,0,0);

The next thing we want to do in this tutorial is to add metal polygons to our project to represent a

DStub. In order to build a DStub circuit we will first need a throughline to go from the left side of

the box to the right side. The easiest way to add metal polygons to a Sonnet project is with the

addMetalPolygonEasy() method. The addMetalPolygonEasy() method requires three values and

may optionally take a fourth argument:

1. Metalization level index

2. The vector of X coordinate values

3. The vector of Y coordinate values

4. (Optional) The Metal type

The fourth argument for the addMetalPolygonEasy() method specifies the type of metal that should

be used to create the metal polygon. For this polygon the fourth argument will be omitted; when

the fourth argument is omitted the polygon is made out of lossless metal. The

addMetalPolygonEasy() method will return a reference to the newly added polygon.

Sonnet projects with two dielectric layers have one metalization level. The first metalization level

in a project is level zero. In this example there is only one metalization level which is level zero.

The addMetalPolygonEasy method also requires two vectors to specify the coordinates for the

polygon verticies. The coordinates may be specified in either the clockwise or counterclockwise

direction. The Sonnet project file format specifies that the last point in a polygon must return to the

first vertex of the polygon in order to close the shape. If the user doesn't close off the polygon then

addMetalPolygonEasy will do so automatically. The vertex coordinate vectors are assigned with

the following two lines:

aVectorOfXCoordinates=[0 330 330 0];

aVectorOfYCoordinates=[90 90 110 110];

And the polygon is added to the project with the following line.

DStub Tutorial

Version 1.1

aThroughLine=Project.addMetalPolygonEasy(0,aVectorOfXCoordinates,aVectorOfY

Coordinates);

The above command added a throughline to our design. The same sequence of commands may be

used to create a stub:

aVectorOfXCoordinates=[60 60 80 270 270 80 80 60];

aVectorOfYCoordinates=[110 130 150 150 130 130 110 110];

aBottomStub=Project.addMetalPolygonEasy(0,aVectorOfXCoordinates,aVectorOfYC

oordinates);

The Sonnet "Getting Started Guide" then proceeds to copy the metal polygon, flip it, and move it to

the other side of the throughline. We could have added the second stub to the project using the

same method as we used to make the first stub but this tutorial will instead make a copy of the stub

and flip/move it appropriately. The stub can be copied using the following command:

aTopStub=Project.duplicatePolygon(aBottomStub);

The above command will make a copy of the specified polygon, add it to the project, and return a

reference to the newly created polygon.

The next thing we want to do is flip the newly copied polygon. We can flip the polygon in both the

X and Y directions by using the following commands:

aTopStub.flipPolygonX();

aTopStub.flipPolygonY();

Now the stub needs to be moved to be adjacent to the throughline. This translation can be

accomplished by the following command:

aTopStub.movePolygon(165,70);

The movePolygon() method will move the polygon such that its centroid is at the location (165,70).

The polygon's centorid is the middle of the range of X coordinates and the middle of the range of Y

coordinates.

All of the polygons in our project at this point have been lossless metal. One of the things the

Sonnet "Getting Started Guide" shows users is how to define a new type of metal, change the types

of existing metal polygons in a project to the new metal type and how to change them back to

lossless metal. This tutorial will also perform those operations even though the net result of those

operations is an identical design.

Before we can use a user defined metal type we must first define it. In this tutorial we want to

define a metal type called 'Half Oz Copper' that has the following properties:

 Name: Half Oz Copper

 Type: Normal

 Conductivity: 5.8e7

 Thickness: 0.7

This half oz copper metal type can be defined with the following command:

Project.defineNewNormalMetalType('Half Oz Copper',5.8e7,0,0.7);

DStub Tutorial

Version 1.1

Now that our new metal type is defined we can change the three polygons in our project to this new

metal type. There are multiple ways to change a polygon’s metal type but in this tutorial we will

use the changePolygonType() method which accepts a polygon reference. We can change all three

metal polygons in our project to half oz copper with the following commands:

Project.changePolygonType(aThroughLine,'Half Oz Copper');
Project.changePolygonType(aTopStub,'Half Oz Copper');
Project.changePolygonType(aBottomStub,'Half Oz Copper');

We can then change the metal types of these polygons back to lossless using the following three

commands:

Project.changePolygonType(aThroughLine,'Lossless');
Project.changePolygonType(aTopStub,'Lossless');
Project.changePolygonType(aBottomStub,'Lossless');

The lossless metal type is a hidden built in type and does not need to be defined before it can be

used.

With our polygons in place we may add ports to the throughline. SonnetLab has serveral methods

for adding ports to projects; one of the easiest methods is with the addPortAtLocation function.

The addPortAtLocation function takes two arguments: a X coordinate and a Y coordinate. The X

and Y coordinate indicate the location where the user would like to place the port (must be near a

polygon edge) and SonnetLab will place the port in the appropriate location. In this example we

want to add a port to the throughline at location (0,100) and another port at location (330,100).

These two ports can be added with the following lines:

Project.addPortAtLocation(0,100);

Project.addPortAtLocation(330,100);

Congradulations! We have successfully designed a DStub circuit. Although the components of the

circuit have been created there are a few more steps that need to be taken before we can simulate

the project.

When a new project is created it will need to be saved to the hard drive before it can be simulated.

The first time a user wants to save a particular Sonnet project to the hard drive they must specify a

filename for the project; this can be accomplished using the saveAs() method as follows:

Project.saveAs('DStub.son');

The above command will save the Sonnet project specified by the variable Project to the hard drive

with a file named 'DStub.son'. After the user does a single saveAs() command they are then able to

use the save() command which will save the file to the hard drive using the same filename that was

specified by the most recent call to saveAs(). If a Sonnet project file is opened from the hard drive

(rather than being created from scratch from within Matlab) the user does not need to call saveAs()

in order to specify a filename for the project file; the save() function will overwrite the read project

file. At any time any Sonnet project may be saved with saveAs() in order to specify a different

filename; the result of which will also cause all later calls of save() to be saved to the new filename.

Before the project can be simulated the user must first specify the frequency sweep settings. In this

DStub Tutorial

Version 1.1

tutorial we will simulate the project using a linear frequency sweep. The three arguments that are

needed for linear frequency sweeps are the start frequency value, a stop frequency value and the

step size. The command to add a linear frequency sweep from 4Ghz to 8Ghz with a step size of

.25Ghz is the following:

Project.addSimpleFrequencySweep(4.0,8.0,0.25);

Now that we have specified the simulation settings we can simulate the project using the following

command:

Project.simulate();

The above command will save the project and call Sonnet's simulation engine to simulate the

project.

When the simulation is complete the user may examine the results by manually opening the Sonnet

response viewer or they can automate opening the response viewer by issueing the following

command:

Project.viewResponseData();

