Fast 3D Planar Electromagnetic Analysis via Unified-FFT Method
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Abstract—M icrowave and mm-wave cir cuits today are larger,
faster, and more integrated than ever. This trend continually
increases the requirements and applications of electromagnetic
simulation. To satisfy this demand, a Unified-FFT method is
developed, implemented, and tested, with promising results. The
Unified-FFT method combines the fast Matrix Solve Operations
(M SO) of the FFT-enhanced Pre-Corrected FFT (PFFT) method
with the fast Matrix Fill Operations (M FO) of the FFT-enhanced
Sonnet V13. Together, these operations allow for high-accuracy
simulation with reduced size constraints, and overall speed
improved by morethan an order of magnitude.

Index Terms — CAD, CAE, EM simulation, PFFT, Sonnet,
Speed-Enhanced

I. INTRODUCTION

Solution of the Maxwell equations for 3D planar circuits
embedded in a shielded multilayered medium is equivalent to
the solution of the electric field integral equation (EFIE):

Jlg Gr,x)-)(x") ds’ = E(r), )

where G(r,r) is the dyadic Green's function of the shielded
layered medium [1], and J is unknown current on conductors
of the circuit S. Each term G, (r,x") , a,b =x,y, of the
layered medium dyadic Green's function in the rectangular
enclosure is a sum of four terms,

Gab(r: r') = Scllbrab(x - x’:y - )")
+ saplap(x —x",y +y") 2
+ sopTap(x +x',y = ')
+ sgplap(x +x',y +y")

where s}, = +1, i=1,..,4, depend on the choice of
PEC/PMC boundary conditions on the enclosure walls [1].
Due to the fact that each term I, exhibits trandational
invariance over coordinates x and y in the enclosure’s cross-
section, the impedance matrix eguation Z -1 =V resulting
from the Moment Method discretization of (1) allows for both
fast evaluation of matrix Z elements—matrix-fill operations
(MFO)—and evaluation of matrix-vector products Z - I—
matrix-solve-operations (MSO)—using FFT. In previous
work, fast MFO and fast MSO were implemented separately
in Sonnet [1] and in PFFT [2], creating computational
bottlenecks in the MSO for the former and MFO in the latter.
In this novel work, the fast FFT-based MFO of Sonnet [1] is
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Fig. 1. Block diagram demonstrating Unified-FFT.

Fig. 2. The uniform FFT grid is represented by a matrix of dots in
Sonnet. Vectors “snap” to the grid allowing FFT to be used in MFO.

unified with the fast FFT-based MSO of the PFFT agorithm
[2], asshownin Fig. 1.

The computational complexity and memory requirements of
the Unified-FFT solver scales a O(N log N) and O(N),
respectively, thus enabling the expedient solution of very
dense and electrically large integrated circuits. Accordingly,
the Unified-FFT framework is shown to produce fast and
accurate full-wave EM analysis of shielded 3D planar circuits
of unprecedented sizes.

Il. FFT-ENHANCED MATRIX FILL OPERATIONS (MFO)

MFO refers to calculation of matrix Z elements, which in
turn are a relation of voltage on all subsections due to current
on one subsection. Ordinarily, this is highly computationally
intensive and is shown in [3] to be of the form

E, = i cos (m;’mo) cos (m7;/1m1)

m=0
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where £, (m,n) = G,(Ax)G,(Ay)[N2ZFE + N2ZTM]. One often-noted
characteristic of simulation with Sonnet V13 [1] is that
geometries are discretized to a uniform grid, as seen in Fig. 2.
This uniform distribution is equivalent to uniform spatial-
sampling, which alows the use of the FFT to enhance
eva uation speed of (3), with its similarity to a Fourier series.

[11. FFT-ENHANCED MATRIX SOLVE OPERATIONS (M SO)

Due to translational invariance of Green's functions
components in (2), the scattered E-field integral in the left-
hand side of EFIE has the form of 16 terms, each of which is
in the form of two-dimensional convolution, correlation, or
convolution-correlation [4] over ( X , X )and (y , VY )
coordinates. Choice of the basis functions in the MoM which
conform to a regular k, X k, grid in the enclosure’'s cross-
section naturally as in [1], or through replacement with
equivalent point sources [2], casts each of these 16 terms into
the form of discrete convolutions and correlations computed
using FFT asfollows

ff Tap (X iy £ %' Vi, £y )P (x", ¥ )dx'dy’
s
Ki-1 Kp—1
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where (kyAx, kyAy), ky =0,.., K, —1; k, =0,..,K, — 1, are
samples of the observation locations on the k, X k, grid for
the scattered field, and, (k';Ax,k',Ay), 'y =0,... K, —1; k', =
0,...K,— 1, are the samples of the source locations for the
discretized current.

V. ENGINEERING THE UNIFIED-FFT SOLVER

While the shielded, 3D-planar nature of Sonnet and PFFT as
implemented in this work fundamentally allow integration, the
implementation of them together (Unified-FFT) is non-trivial.
A robust interface between the two codebases is written in
Matlab [5] with the freely-available SonnetLab toolbox [6].
This toolbox alows for vast control of Sonnet projects, with
access to Sonnet’ s default MFO routines with standard Sonnet
V13. Notably, Sonnet's MFO are considerably faster in
Unified-FFT than in conventional Sonnet. This is because
PFFT’s MSO routines only require a small portion of the
MoM Matrix to befilled, as shown in Section V.

Additionally, Matlab is used to convert geometry and data
into a format acceptable for PFFT’'s MSO routines. Data is
transferred viafile writes and calls are automatically made to
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Fig. 3. Current distribution of a 30,000-unknown mock feed-network
as simulated in Unified-FFT (above) and Sonnet V13 (below).
Differences are due to the color-mapping agorithms by respective
software packages.

the executable via command line. Moreover, some original 32-
bit PFFT code from [2] is modified and recompiled with a
modern 64-bit compiler for greatly increased performance and
capability, and to further streamline the Unified-FFT package
while allowing simulations exceeding 2 GB of memory.

V. RESULTS AND DISCUSSIONS

Unified-FFT has been implemented and tested on several
sample circuits, ranging from N < 400 to N > 50000
unknowns. In general, results deviate from conventional
simulation by 1% — 3%. Performance scales very well, with
Unified-FFT demonstrating speed-ups well in excess of 10x.
It isimportant to acknowledge that, due to its simulation-focus
and prototype nature, this work is comparing Unified-FFT
results to Sonnet results, as opposed to measured data
Comparisons are made for both accuracy and performance,
and Sonnet is assumed to be a solid baseline due to years of
rigorous validation efforts[7].

A. Accuracy

Initial testing is very promising with regards to accuracy,
which is validated in three ways. First, most important in a
physical sense, is that of current distributions. Fig. 3 shows
two current distributions of the same circuit, a mock feed-
network consisting of 30,000 unknowns. The upper part of the
figure is plotted from results ssmulated by Unified-FFT, and
the lower is directly plotted in Sonnet V13. Aside from color
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Fig. 4. A comparison between Sonnet and Unified-FFT of MFO and
MSO timing, as well as memory requirements for a problem with
30,000 unknowns.

mapping differences due to graphing engines, the distributions
areindeed identical.

Second, Y-Parameters (at circuit ports) from the
simulations are compared. In this instance, results are
generally within 1% — 3% of conventional Sonnet simulation.

Findly, individual matrix elements are compared after
MSO is complete. Here, 1% — 3% generally holds, however,
in areas with low current levels, error can be as high as 15%.
Fortunately, this generally occurs in areas with significantly
less contribution to extracted circuit parameters.

B. Performance

Small circuits do not see performance improvements vs.
conventional simulation (i.e, Sonnet V13) due to un-
amortized overhead incurred during setup of the PFFT
algorithm. However, these circuits are sufficiently small such
that they already simulate within seconds. As N increases
beyond approximately 5000 — 7 000 unknowns, the O(N log
N) scaling dominates performance. At 10000 unknowns,
MSO is typically 2x faster than conventional simulation, with
the MFO being several orders of magnitude faster. By 30 000
unknowns, Unified-FFT becomes an order-of-magnitude
faster, as seen in Fig. 4. It is noteworthy that, despite scaling
O(N), the memory requirements are relatively higher than the
MSO and MFO. This is due to incurred-overheads, and can
likely be reduced with further optimizations.

C. An Application-Inspired Example

A mock-up example is created (Fig. 5) for future work, to
mimic the types of very large, highly-integrated circuits that
are rapidly becoming popular. The circuit is an extended
version of the feed-network from Fig. 3, including several
spirals. While not a production-type design, it serves well to
mimic the type of large circuit functionality being demanded
of modern simulators. The circuit features over 50,000
unknowns, which is close to the limit of conventiona
simulators and thus the practical ceiling for comparative
puUrposes.

Fig. 5: Another circuit mock-up useful for prototyping the Unified-
FFT tool. It intends to capture the essence of modern SoCs/RFICs at
abasic level.

Once rigorous characterization of accuracy is established,
this circuit as well as considerably more complex circuits will
be smulated using UFFT and detailed in future work.
Preliminary estimates suggest memory limitations for Unified-
FFT will exceed 500 000 unknowns.

V1. CONCLUSION

The Unified-FFT method has been developed, prototyped,
and tested with very positive results, by combining the fast
M SO of the FFT-enhanced pre-corrected FFT method with the
fast MFO of the FFT-enhanced Sonnet V13.
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