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ABSTRACT

The precise analysis of microstrip circuits at microwave and
millimeter wave frequencies has beacome critically important in the
design of monolithic microwave GaAs integrated circuits. This is
because the usual .post-fabrication ‘tweaking’ of circuit response is
rarely feasible and the resulting lengthy repeated design
modifications drive design costs to unacceptable levels.

This dissertation will describe a Galerkin method of moments
analysis for microstrip circuits of arbitrary planar geometry enclosed
in a rectangutar conducting box. The technique entails a time-
harmonic electromagnetic analysis evaluating all fields and surface
currents. This analysis is suitable for the accurate verificatiaon of
designs prior to fabrication.

A computer program has been written in Pascal on an IBM-PC
implementing the analysis. Several microstrip circuits were built and
measured. The resulting agreement with calculations verifies the

accuracy of the analysis.
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Chapter 1
INTRODUCTION

Microstrip circuits form an integral part of most current
microwave systems. The attractiveness of implementing a microwave
netwark in micrastrip resyits from the ease with which an intricate
circuit can be manufactured. If the increased losses (as compared
with, for exampile, waveguide) can be toierated, the microsctrip
implementation of a4 circuit is freqguently preferred.

Manufacture of a microstrip circuit starts with a substrate, a
rectangular slap af dielectric., Common dielectric materials include
Teflon, sapphire, gquartz, Alumina, silicon and gallium arsenide.
Substrates with large gielectric constants are frequently selectea so
45 to confine most aof the fields within the boay of the substrate.

[nitially, the substrate is completely covered oy a thin
conguctor commonly called metalization. The metalization may have
several layers of gifferent meéals to enhance supstrate adhesion.

The top side of the substrate is then covered Dy a photoresist
which is exposed with the desired micrastrip circuit pattern. The
unexposed (or the exposed) portions aof the metalization are then
etched away leaving the desireag circuit, The oottom side of the
supstrate remains metalized, forming & ground olane.

Frequently, aggitional components (e.g.., Transistors, capacitars,
resistors) are then solgdered ar ponded to the surtace of the
microstrip ¢ircuit, Unless the microstrip circuit is to be used as an
antenna, the final step of manufacture is to place the circuit in a

shielding. congucting bax. Loaxial connectors penetrating the shielao
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provide connections ta tne circuit. [f tnis final step is not
performed, unwanted interactions may develop when the circuit is
placed in a system.

At this point the circuit response is measured, usually as a
function of frequency. Since the initial circuit response is rarely
satistfactory, the circuit must be ‘tweaked'. Tweaking consists of
ramav1ﬁq metalization with a diamond scribe, or adding matalization oy
means of silver epoxy or by adding wire bonds connecting small patches
af metalization included on the microstrip substrate for just that
purpose.

In some cases, tweaking is not feasible. For example, with
monolithic microwave integrated circuits, the substrate (usually
gallium arsenide) and circuit are so fragile and so small (geometries
on the order of microns), that any physical maodification af the
circuit is Iiuelv_to result in the destructian of the circuit. In
this case, the only alternative is to repeat the entire circuit design
and manutacture. This can cost several tens of thousands of gollars
ang occupy a significant fraction of a year.

Thé precise analysis of microstrip circuits is the objective of
the work gescriped in this paper. 5uch an analysis will allow any
circuit mogitication to pe performed prior to manufacture resulting in
the reguction or elimination Of post-manutracture tweaking and
regesiagn.

Current microstrip analyses start with a mogel baseag on circuit
theary [£1J. This usualty inciuges TEM transmission lines, STUDS,

capacitors, inductars and resistors, More agvanced analyses will
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include transmission line loss and dispersion moaeled by cClosea torm
AppDroxXimations pased on more extansive elecTromagnetic analyses,
Microstrip giscontinuities i{e.g., step in line width, junction of
three or more lines, 8Ttc.) may also pe included in a similar manner,
Restrictions on the closed form approximations are sometimes
stringent.

The circuit model of a large microstrip network can become
complicated. As such, interconnection errors in the moadel may be
difficult to detect and remove. In addition, while the resulting
accuracy is sufficient to approximately realize a desired circuit
response, the circuit model accuracy falls short of that which would
be desirable for many tasks.

Most other work to date has concentrated on development of
numerically efficient circuit modeils of microstrip elements. Such
models can be included in extensive existing microwave circuit
analysis programs in hopes of improving the accuracy of the microstrip
circuit representation, The concentration on numerical efficiency
results from the reguirement for automatic circuit ocptimization.
Ontimizﬁticn algorithms require the repeated analysis aof a circuit,
changing parameters of the circuit each time. An analysis which can
not be performed quickly, such as an electromagnetic analysis, is
unacceptable in an aoptimization loop.

Electromagnetic analyses have peen used to provide data points
far fitting approximate closed form expressions. Also, cue to the
camplexity of an @lectromagnatic analysis, the vast majority arf work

has Deen restrictad To, ar Clasely related to, Two dimensional
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microstrip structures (i.e., no variation of geometry along one axis).
The technique presented here will take a different tack. &
precise three dimensional electromagnetic analysis of arbitrary
microstrip geometries is the primary objective. While this
essentially precludes using the analysis in an optimization loop (at
the present time), the analysis will still be sufficiently fast that
meaningful results can be obtained, even gn a personal computer, far

circuits of moderate complexity.



Chapter 2
PREVIOUS WORK

Most current applied microstrip circuit analysis is based on
circuit theory approximations [1] to the actual microstrip structure,
For example, a microstrip line can be approximated by a TEM
transmission line [2]. More elaborate analyses will include closed
form -approximations to circuit theory models of various microstrip
discontinuities [1]. The approximations are typically based upon an
glectromagnetic analysis., Some circuit theory analyses are more
closely related to an underlying electromagnetic analysis [31, [4] in
order to achieve greater accuracy. .In all cases, the objective is to
requce a micrastrip analysis problem to a circuit theory problem with
emphasis on speed so that the analysis may be included in an
gptimization loop. Electromagnetic analysis of an entire microstrip
circuit, without resort to circuit theory, has not yet been pursued
due to excessive numerical reguirements.

Here, we will explore just such an electromagnetic analysis of
aroitrary micrustriﬁ structures. The numerical requirements will he
large nuf manageable, even on current personal computers. The time
required for analysis will preclude its inclusiaon in an optimization
loop, however, the accuracy provided will justify the use of the
analysis prior ta circuit fabrication. We will aiso note that in many
other fields (e.g., structures, thermodynamics, fluid flow,
seismotagy, etc.) the value of an accurate, numerically intensive,
general purpose computer analysis is wel!l established (51.

The analysis follows from section B-11 af [6] wnich describes a
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technique for the analysis of planar waveguide probes. The technigue
is mogified for a shielded microstrip box and is used to calculate the
fields in the box due to any rectangular patch of current. These
results are then applied in a Galerkin implementation of the method of
moments [71].

The analysis described here is closely related to the spectral
domain technique [9]. The spectral domain technique was first applied
in the analysis of microstrip disp;rsion (101, L1113,

A number of techniques, including the spectral domain technigue,
have been applied to the analysis of three dimensional microstrip
resonators [12] - [38]. The vast majority aof this work has been
directed toward the evaluation of resonant fregquencies and modes.
Little work has been reported concerning the analysis of the forced
response of microstrip circuits. Potential difficulty evaluating the
forced response of a shieldea microstrip circuit due to difficulty in
modeling sources has been mentiaonea (91,

One exception is a time domain technique which madels the
microstrip circuit as a mesh of transmission lines with current on a
line repfesenting the magnetic field and line voltage representing
electric field [311 - [33]. The volume of the microstrip box is
divided into a mesh of these transmission lines. Faor each point in
the meésh, six transmission lines must be used in order to represent
the six possible vector components. While this can result in extremely
farge numerical reguirements, it can provide detailed infaormation on
the resulting fields and currents,

Another forced response analysis {34] models a microstrip circuit
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using planar waveguide (the microstrip line is replaced by a waveguide
of wider width with magnetic walls along the sides and electric walls
on top and bottom). In this case, the surface of the microstrip is
divided into a mesh with inductors connecting nodes and capacitors
cannected in shunt to ground. This technique can be used when the
substrate s thin with respect to the wavelength and when coupling
between microstrip edges may be neglected. 5ince only the surface of
the equivalent planar wavegu{da is divided into a mesh, the numerical
requirements are reduced.

More typical are analyses for the resonant frequencies of
microstrip resonators, These are usually accomplished in the spectral
gomain using techniques related to [12]. For example, [13] describes
the analysis of triangular microstrip resaonators. Full wave (as
opposed to gquasi-static) analysis of rectangular microstrip resonatars
is the topic of [151 - [171, [19] and [20]. Rectangular slot
resonator analysis is presented in [24]1. Some of the above analyses
are for microstrip resonators in a rectangular waveguide tube, while
others are for resonatars completely shielded in a pox. These
anarysaﬁ can be used in the evaluation of microstrip discontinuities
£3gl.

Several other analyses (141, [181, [21] approach the resonator
problem with a gquasi-static assumption.

A number of papers have dealt with resonators of arbitrary shape
[253 - [371. Farrar and Adams [25]1 describe the guasi-static
appraach, while Jansen [26]1 - [29] details a full wawve approach.

Jansen uses a paiynomial to represent the resanator surface current



Previous Work
and applies a spectral domain solution. A finite difference method,
the method of lines, has alsc been applied to microstrip resonators
(301 - [331. This technique uses the difference in field between
adjacent points on the substrate surface to represent derivatives of
the field. The initial phase of the analysis regquires points covering
the entire substrate surface while the final phase need consider anly
those points on matalization.

The frequency domain analysis of the forced response of shielded
microstrip circuits merited little attention in the literature
reviewed here. It is not known why the above resonator analyses were

not applied to a forced response analysis.
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METHOD OF ANALYSIS

The rectangular conducting box will be treated as two separate
waveguides joined at z=h (Figure 3.1 and 3.2). Wwe will work with
waveguides of identical dimensions joined with no offset. The
waveguide for z<h will be short circuited at z=0 and will be filled
with a dielectric with dialuﬁtric constant €,. This region will be
referred to as region 1. The waveguide for z>h will be short
circuited at z=c and will be filled with a dielectric with dielectric
constant €,. This will be referred to as region 0. While region 0 is
usuatly air, €, may take on a value other than that of free space.
Using regions 1 and O, rather than regions 1 and 2, simplifies
subsequent notation. The analysis is extended in a straightforward
manner to multi-layered geometries.

The dielectric in region { will be called the substrate.
Microstrip circuitry is realized in printed circuit fashion on the
surface of the substrate. The analysis we will pursue divides the
micrastrip circuitry {the metalization on the surface of the
substrate) intoc rectangular subsections. An appropriate form for the
surface current distribution on the surface of each subsection is
assumed. Then each subsection is taken individually and the electric
fields tangent to the surface of the substrate due to a unit current
on that subsection are calculated. After the tangential fields due ta
gach subsection have been calculated, the magnitude of current an each
subsection is selacted such that an integral of the total tangential

glectric fields over each subsection goes to zero., A source is
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mogelied by a subsection aon which the tangential electric field goes to
a value other than zZero.

All boungary conditions except tangential electric field an the
metalization are met in the initial calculation of the electric field
from each individual subsection. By selecting the appropriate
currents for each subsection, the tangential electric field boundary
condition on the metalization is also satisfied, providing us with the
solution. Once all the currents are determined, the N-port circuit

parameters follow immediately.

3.1 Expansion of the Green’s Function in Terms of Orthonormal

Waveguide Modes

The tangential (or transverse to z) fields in a given region due
to current on a given subsection will be expressed as a sum of
homogeneous waveguide modes. Modes transverse to z will be used with
a Z dependence such that the boundary conditions at z=0 for region |
and at z=c¢ for region 0 are met., Expressions for the tangential fields

will be written as a weighted sum of these modes
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. . sin(k:, z)
- s —
oA T singkiny !
Cost{K:, z}
H. = V.7: ———————— h
v =LV sin(Ki Ny
(3.11
sinlk?, (c-2)1
B2 = 1 ¥y e;
sinlk?, (c=h)]
. coslKky, (c-z}]
Hy = L vy — h;
sinlKy, (c-h}]
where i = Summation ingex over ail moges TE, and ™.
V; = the modal coefficient (weight) of the i°N mode.
¥; = the admittance of the i mode as follows:
YiTE = jﬁﬁzf(mpl}
Y3TU o= juwe, /KL,
'.frl:IJTE = —_jﬂ‘-"‘iz,{(uunj
f5Tn = ~jm£ﬂfK%z
iz = - REREKG
K%Z = + k5 - i-K?
K, = Mn/fa, for rectangular waveguige.
Ky = Mm/b, for rectangular waveguide,
Ky = Wiy &y

Ka = HJMGED
Note that K, tor region 1 is taken as the negative square root
and faor region 0 is the positive square raot. Also, the modal
agdmittances are the agmittances of the sTanding wave modes rather than

thase at the usual traveling wave modes (they differ by the constant
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j). The constant in the denominators guarantees continuous tangential
electric field at the surface of the substrate {(z=h), i.e., we are
assuming there is no magnetic current.

If other than a short circuit forms the top (z=c) or bottom (z=0}
of the shielding box, then only the z dependence (and corresponding
normalizing constant] of the above egquations need be modified.

The e; and hy; are the arthonormal mode vectors. The mode vectors
are determined by the geometry of the shielding waveguide. We will
consider only rectanguiar waveguide here. For rectangular waveguide,

the mode vectors may be written as follows

EEE(H,'}F] = N, g, u, - Nzgiuy
(3.2)

el (x,y)

Npg, u, + NlQ?“y

hy = u,xe; e;

*uthi
where g, = cus{KxxlsipEKyy}
g = sintﬁxxlcastkyy}

N, = JZ78B , M=0 and N#0

=0, M0 and nN=0

= 2(N/b) faBF{NTaT+M BT ) , M#0 and N#0
He = 0 , M=0 and N#0

= jiTEE ,  M#Q and N=0
= Z({M/a) [ADF(N=a=+M=b= ] , M#0 and N20

The functions g, and g, provide the x and y dependence of the
mode wvectors. The constants N, and N, normalize the modes such that

the sguare (the mode vector dotted with itself) of any mode vectar
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integrated over the x-y Cross section of the guide will be unity.
since the mode vectors are also orthogonal, we have an orthonormal
basis for the expansion of any field in the waveguide due to current
an the surface of the substrate,

The superscripts TE and TM mean that the index i is limited to
the TE or TM modes respectively. The functions g,, Oz, N, and N, are
impticitly dependent on the index i through the conventional mode
numbers M and M, MNote that the M=0, N=0 mode need not be included as
all current is transverse to the z direction [39], [401.

It a different geometry is selected for the waveguide shield,
only the above mode vectors need be changed.

Given a specific curreﬁt distribution, J(x,y) = J.u + Jyuy. on
the surface of the substrate, we must determine the modal
coefficients, the V., of the field generated by that surface current.
This is accomplished by setting the discontinuity in tangential H
egual to the assumed surface currant Qistribution. Then, using the
orthogonality of the modal vectors, we may determine the V, of the

field generated by the current.

Jg = “z”[”%kz:h - H z=h}

Substituting the modal expansiaon for H; into the above expression

wields

- Y " [
Js = i I'fi\f:l[uz:’:h:lr

where Y. = Y§ctnlK],(c-h)I-Yictn(K},h)
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The admittance ?1 is the parallal connection of the admittances
of the two sharting planes at z=0 and z=c transformed back to the

substrate surface, z=h. This expression can be rewritten as

Jg = ) Vi¥ie;

Dotting both sides with e;, integrating over the waveguide cross

section, and noting the orthonormality of the modal vectors, we find

vi o= -Z2;(35-e; ds (3.3)

where Z: is the inverse of the Y, described above.

Substitution of (3.2) and (3.3) into (3.1) will yield the
tangential fields Euefywhara in the waveguide. Specialization of
{3.3) to a delta function for Jo will provide the Green's function in
the ‘spatial’ domain for current on the surface of the substrate. The
Green’s function is a cosine and sine series in two dimensions with
the coefficients of the series representing the Green’s functian in
the ‘spectral’ domain.

Since we wish to have guick access to the actual fields, rather
than the transform of the fields, we will remain in the spatial
damain., Remaining in the spatial domain also appears to invalve
little additional computational expense and will ease the task of
maintaining conceptual clarity.

In what follows, wa will determine the Ui far various current
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distributions defined over rectangular subsections. The fields due to
these currents will be applied in a method of moments salution,

The derivation of the modal expansions presented above fallows a
similar derivation in Harrington (61, section 8-11, pages 425-428, for

waveguide probes.

3.2 Evaldation of the \"1 For \"ﬂ:l"'iﬂllﬁ Current Distributions

Evaluation of the V; will require the evaluation of surface
integrals of the current distribution dotted with a mode vector. We
will consider only current distributions over rectangular subsections.
The current distributions will be symmetrical with respect to the
center of the subsection. Further, only current distributions which
are separable with respect to x and vy will be evaluated. One
component of current, either x or y, will be evaluated at a time.

Since we will be working with separable current distributions,
the integrals of (3.3) reduce to the product of two one dimensional
integrals. We will evaluate the one dimensional integrals for a
number ﬁf cases.

While the evaluation of the integrals is tedious, the assumption
af current distribution symmetry will provide a simple result.
Specifically, the result of each integral will be a constant,
dependent only aon the dimensions of the subsection, multiplied by the
aporopriate component of the mode vector evaluated at the center of
the subsection, The simplicity of this result will provide

considerable flexibility in the choice of expansion functians.
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3.2.1 The Rectangular Pulse Function

The rectangular pulse function is the simplest pulse function
that we shall consider. The rectangular pulse is defined as (Figure

3.3)

1, Ko—aX/2 £ K < Kotax/Z

i

fix)

a, otherwise

wWhen the rectangular pulse is used as part of a current

distribution, we will require the evaluation of

Fe = | foxicosikxrax and Fe = | fixisin(kxyax
The constant K will be the wavenumpber corresponding tao the
variable of integration, for example, Mmfa. Evaluation of the above

integrals is straightforward yielding

Fo = #sin(Kax/2)cos(Kxs). K#0
Fg = ésiniﬁaxf2}5inihxg}. K#0
Fe = ax  and Fg = 0, K=0

Note that the constant which depends on the subsection dimensions
is the same for poth cases, as one would expect from the nature af the

functions oeing integrated. In subsequent sections, we will refer ta
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that constant as G{ax). In some cases, the integrand will be a
function of y instead of x. In such a case we will refer to Glay].

For the rectangular pulse we have

G(ax) = fsin(Kax/2),  K#0

= AKX, k=0

We will use F., Fg, G(ax} and f(x) as a generic notation. The
specific functions which they represent will depend on the type of

pulse being considered.

3.2.2 The Triangular Pulse Function

For reasons to be detailed later, it is desirable to investigate
higher order pulse functions. We will next consider the triangle
pulse function. The triangle pulse may be viewed as the convolution

of two of the rectangular pulses considered above. [t is5 defined as

K=Ka
fix) = + 1, Ko=aX £ X € Xg
LXK
Ko =X
= + 1, Ko £ K < XgtaX
A
= 0, otherwise

The integrals of interest are
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Fo = | foxocostkxax and Fg = | flx)sin(Kxlax

The indicated integrations (over the entire domain af fix)) are

tedious but, again, the result is simpie:

Fe = GlaX)COS(Kx, ) and Fg = Glax)sin(kxg)
with Glax) = E%ﬁr(l—cusiﬁaxi), K#0
= Ax, k=0

3.2.3 The Parabolic Pulse Function

A further convolution of the triangular pulse with a rectangular
pulse yields a piecewise parabolic pulse. When the x-axis is scaled
s0 that the area of the pulse is ax (the same as the other pulse

types), we have

H=Kpg 2
fix) = 2(1+ V', Xo-BX £ X < Xo-AX/2
AX
X=X
= 1-2{ u)z’ Ko —bKi2 £ K < M, +AX/S2

AX

KMz

= 21 ' X #aX/2 € X < xg+ax
Ax

= 0, otherwise

A5 befoare, the integrals of interest are

18



Analysis 19

Fe = | foxcosikxyax and Fo = [ foxosintkx)dx

Evaluation of these integrals must be performed over three
separate ranges. Since f(x} is symmetric about x,, the result

simplifies to

Fe = Glax)cos(Kxg) and Feg = GlaxIsin(Kx,)
with G(ax) = zErps(2sin(kax/2)-sin(kax)}, K#0

AX, E=0

Note that even the piecewise parabolic pulse, has a result very

nearly as simple as the rectangular pulse result,

3.3 General Expressions for V,

We will use products of the above functions; the rectangular,
triangular and parabotic pulses; to form the desired current
distributions. For example, two rectangular pulses, one a function of
% and thé other a function of y, would be multiplied to represent a
uniform current distribution over a rectangular subsection. A more
useful example is a rectangular pulse as a function of x multiplied by
a triangular pulse which is a function of y. This would provide a
‘roof top’ current distribution as shown in Figure 3.4, If the
triangular pulse is replaced with a parabolic pulse, the flat portions
of the roof would become curved.

Tha roof-top distribution in Figure 3.4 depicts the current inm a
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rectangutar subsection. The base of the three dimensional drawing
represents the rectangular subsection. The height of the figure above
the base is proportional to the magnitude of the current density at
that point. The current flows in the direction of the triangie.
Figure 3.5 shows two roof-top functions which have been placed on
adjacent, overlapping rectangies. Note that the sum of the currents
provides a piecewise linear approximation to the actual surface
current in the direction of current flow and a step approximation to
the current in the lateral direction.

We will not reference specific pulse functions in the derivations
that follow in this section., Rather, we will use the generic notatian
introduced above. Specifically, fi{x) will denote a pulse function
which is a function of x. Similarty, fiy) will denote a pulse
function which is a function of y. G(ax) is the constant, derived
above, which is obtained when fi{x) is multiplied by a sine or cosine
and integrated over the domain of fi(x]). Similarty for Glay). We will
indicate distinct fix}) and G{ax) functions by means of subscripts.

In subseguent derivations it will be necessary to differentiate
between éﬂurce subsections and field subsections. For this analysis,
we will consider a surface current on only one subsection at a time.
That subsection will be termed the source subsection. With current on
ane subsection, we must find the electric field generated by the
current an any other subsection, If we are cansidering the field an a
supsectian, it will be called a field subsection, When we are
considering the field on the source subsection itself, the field

supsection and the source subsection are the same. We will indicate
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quantities relating to source subsections with a prime. Quantities
relating to a field subsection will remain unprimed. Thus G’ {ax) will
refer to a source subsection and GlAx) will refer to a field
subsection.

A primed modal vector will be used to indicate that the modal
vector is to be evaluated at the center of the source subsection,
€.9., 9f = g, (Xg,¥5 ).

To evaluate the V,;, the modal coefficients, we will use (3.3)

Vi o= —EiESJS-ui ds . (3.3)

The modal vectors, e,, are repeated here for convenience

el®(x,y) = N, g,u, - N,g,uy
(3.2)
EEH(H,E’] = Nag,u, + Nigauy
We will first consider an x directed surface current J5 =
fot[foE{yJux . After evaluating the ¥; for both the TE and TM modes,

we will then consider a y directed current, J . = Jyf,ix}f;tyluy. Al

integrations are over the entire guide cross section.

viE = -7TE Eg Jy fe 150y N, g, axdy
vin = ‘EE? EE Jy fy (X112 (yIN, g, dxdy
e - +zre 55 Jyfs (X1 0y IN, gz dxdy
vip = -z {1 Jyf3 (X185 (YN, gz dxdy
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Evaluating the indicated integrals, we obtain

VIS = =ZE0G; (ax1Gs (AYIN, G J

X
V% = -ZTMG; (ax1G4 (AYINZG) Jy
vie = +ZTEGJ (AX )G, (aY )N, G Iy
Vs = 2163 (ax )G (AYIN, g2 Iy

These Vv, may be used directly in (3.1). Evaluating the
transverse electric fields at z=h due to the surface current, J;, we

find

Et|z=n = I Vie;

Substituting in the v, and evaluating E; due to the TE field

first
ETE = E[-E;ﬁula;(axJG;{ang;Jx + E;ﬁﬂzﬁétﬂxlﬁiiﬁylgijy]“=gi
e = T(+ZpEN, 67 (ax)65 (ay 1oy J, + E;ﬁﬂzﬁifﬂxlﬁifﬁF}9£Jy)“29=
EL" = E(_E'E"E]NEE;(ﬁx]ﬁé{ﬁy]g;,]x + EE.I'F.IME;{AX]E;[Aylgz'Jy}N:Q:

I

V" = I{-ZpmN2G/ (ax163 (ay)g) Iy

+

Zaaulﬁgtnxlﬁ;Eﬁy}ggJy)N,g,

summing the TE and TM modes, we have
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&~ 2~
B, = 3 [-67 (ax)65 (ay)gig, (N Zpa+NzZin ) ] 3y +
+ [ag(ax16; (ayIN, Na a2, (20825 ) ]9y
(3.4)

Ey = § (67 (ax)63 (ay )N, Ny g Ga (ZRE-Z0R V]9, +

+ [—-G,:{ax}ﬁ;[ny)g._:g,[hl:i;]ﬁ-bnff}nm]%

Equation (3.4) represents the electric field tangent ta the
surface of the substrate. This equation is simitar to eq. 1B in [9],
illustrating the close resemblance of this technique to the spectral
domain approach.

A guantity which will be of interest is a weighted integral of a
tangential component of the electric field on a subsection. We will
choose the weighting function for the x component of the electric field
to be f,(x)f,(y), where f, and f, correspond to a field subsection.
Multiplying E, by this function and integrating term by term, we find
that simply multipling each term in the summation by G, (Ax]Galay)
gffects the integratiaon.

5imilarly, we will choose a weighting function for the y component
af the electric field to be f,(x)f,{y), where fr and f, correspand to
a field subsection. In a like manner, the integration is effected by
multipiving each term in the summation for E.:.f by Gy lax)a, (ay).

These integrals (known as reactions] of the electric fielg will
be useful for implementing a Galerkin analysis and for calculating

circuit input admittances,

3.4 Implementation of the Method of Moments Soilution
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A method of moments solution will be implemented by expanding the
current on the microstrip metalization into a sum of currents an
rectangles, the rectangles subdividing the entire metalization. The x
and y currents may (and will be) expanded onto distinct sets of
rectangles. The total current will be written as a sum of the current

on all rectangles.

Jg = T Taefa 00X fa v,y Uy + 0§y fs G X ) fa(y,yp)uy,

The kN subsection is for x directed current and is centered at
Xgs¥g. The 2N subsection is for y directed current and is centered
at X;,¥p;. The centers for the x and y current subsections will, in
general, be different. For complete generality, the pulse functions,
f, can be different on different subsections and the subsections may
be different sizes. For the present task, we will assume that the
four pulse functions are not a function of the indices k and £ and
that all subsections have the same ax and Ay .

The simplest choice for the pulse functions would be rectangular
pulses for all four, f, through f,. Then dividing the microstrip
metalization into subsections will simply consist of selecting
adjacent, non-overlapping rectangles which caver the entire
metalization., A problem with the rectangular current distripution is
that the discontinuity in the current at the edges of the rectangular
subsection results in infinite line charges. The gifficulties

ancountered in this situation are giscussed later.
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A second choice for pulse functions is to use.a triangular pulse
in the direction of the current and a4 rectangular pulse in the ather
direction. This would correspond to making f, and f, triangles while
leaving f. and f, as rectangles. Now the divergence of the current is
merely discontinuous rather than undefined. The e&lectric field at the
edge of the puilse is still singular. However, when weighted by the
same triangle-rectangle pulse functions, the singularity is
integrable. This is aone reason why we are interested in the weighted
integral of the electric field aover each subsection.

The triangle basis function has been used [43] for two
dimensional open microstrip problems. The triangle-rectangle pulse
function was introduced by Glisson and Wilton (411 as the ‘roof-top’
function. In order to use the roof-top function as a basis function,
the subdivision of the metalization into rectangles must be performed
carefully.

First, the triangle portions of the current distributions will
overtap as in Figure 3.5. This provides a piecewise linear
approximation to the current in the direction of current flow. The
rectangle portions of the current distributions must be adjacent, this
results in a step approximation to the current transverse to the
direction af current flow. This must be true of both the x directed
and y directed current. If all subsections possess The same ax,ay
parameters, such an arrangement can be realized by spacing the
rectangle centers aon & ax,ay grid. As will be pointed out next, the
same AX,AYy grid cannot be usad for both the ®x anag y directed currents.

The rectangle function has a width of ax {or Ay) while the
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triangle function has a total width of 2ay (or 2ax). The x directed
current has a triangle in the x direction, while y directed current
has a triangle in the y direction. We could place the centers of both
¥ and y directed current subsections on the same grid. However, any
edges in the metalization current expansion will not be clearly
defined. For example, take an edge which is paraliel to the x-axis.
Is that edge located where the x directed current (rectangle function]
ends or is it ay/2 further away, where the y directed current
(triangle function) ends? While this is a problem, in the 1imit, as
Ax and Ay go to zero, it will make 1ittle difference. We must,
however, turn our attention to a more important problem.

A rectangle of current on a substrate surface, much like a
current element in free space, will generate only an electric field
parallel to the direction of the current at the center. There is no
central electric field generated perpendicular to the direction of the
current. The same is true of the integral aof the electric field over
the center of a source subsection. If we use the same grid for the
centers of the x and y directed currents, then x directed current can
not genérate any y directed electric field on its own subsection. The
reverse is true for y directed currents. Thus, (given an arbitrarily
large conductivity) a current on a subsection cannot generate any
perpendicutar current on a colocated subsection. As will be discussed
later, this kind of subsection arrangement generates incorrect
resutts.

This praoblem is resolwved in a strajight forward manner as

suggested by GBlisson and Wilton (411, Simply offset tne grid for ane
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current component by ax/2,ay/2 with respect to the other grid. This
will allow every subsection to generate perpendicularly directed
current on all other subsections., As an added benefit, it will also
cause the edges of the x directed and y directed current expansions to
line up perfectly.

Since there is little additional numerical effort, we will also
investigate a parabolic-rectangle distribution function. Since this
function is smoother than the triangle pulse function, we will be able
to accurately represent the parabolic pulse with fewer waveguide modes
than for the trianguilar pulse. However, it will be constrained to
zero derivative at the subsection centers, in contrast to the
discontinuous derivative of the triangle function.

Implementation of a Galerkin method of moments solution is now
straightforward., Divide the microstrip into an x and a vy directed
grid of subsections as discussed'abaue. The current densities on the
subsections will form a set of dependent variables in a system of
eguations. Using (3.4), evaluate the weighted integral of the
glectric field on all subsections due to each current. The weighted
integralﬁ af the electric field on the subsections will form the set
of independent wvariables. The independent variables will now be
related to the dependent variables by an impedance matrix. Pick one
{or more) subsections as a source, set the integral of the eflectric
field an that subsection equal to one and all the others to zero (zero
tangential electric field on a conductor). Invert the matrix and you
have a solution, the currents an the subsections which give the

desired tangential electric field.
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The selection and characterization of the source will be

discussed next.
3.5 The Source Model

Microstrip circuit inputs and outputs are usually taken at the
edge of the substrate by means of a coaxial cable penetrating the
shielding sidewall at z=h. The coax shield is connected to the
microstrip shield and the coax center conductor is attached to a
microstrip conductor.

The coax aperture can be modeled by a conductor backed
circulating magnetic current. We will assume that the aperture is
small and that the aperture current has negligible effect. When we
compare measured data with calculated data in a later section, we will
find that the contribution from the circulating magnetic current is
important and can be modeled, for pracfica1 situations, as a small
fringing capacitance in shunt with the connector.

The primary effect will be the electric current injected by the
center conductor. The center conductor is circular and the micrastrip
is a two dimensional surface. Assuming the center conductor is small,
we can model the current injected by the coax center conductor as a
rectangular subsection of surface current directed perpendicularly to
the shielding side wall. This subsection will be called a port
subsection. It i5 convenient to use the same pulse function as with
the other subsections of the microstrip circuit. This facilitates the

transition from the port subsection to the microstrip subsectians.
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The center of the port subsection will be on the shielding sidewall
with only half of the pulse protruding from the sidewall.

Evaluation of the V, for a port subsection is similar to that of
the microstrip subsections. Images provide us with exactly the same
current distribution on the port subsection as the other subsections,
only now half the current is inside the shield and half is outside.
Thus the integral of (3.3) extends over half of its former domain (the
inside half). Since the integrand is even about the sidewall, the
G(ax) or G(ay) (and, in turn, the V,) are simply half that of a full
pulse,

In summary, a port subsection is centered on the shielding
sidewall at the location of the coaxial input. Then, since only half
the pulse is inside the shield, each row and column of the impedance
matrix associated with the port subsection is multiplied by one half.

Otherwise, port subsections are the same as all the other subsectians.

3.6 Evaluation of the Input Admittance

Fur.the initial portion of this section we will discuss the input
admittance of a one port microstrip circuit., duantities associated
with that port will be designated by subscript 1. Elements in the
admittance matrix of the entire micraostrip system will have double
numerical subscripts.

The input admittance will be evaluated by means of the usual

variational expression (pp. 348-349 af [&6])
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1] e-3as

Since E s zero everywhere except at the port subsection, we need
only consider the current on the port subsection. In the Galerkin
solution outlined above, we represent the source as the weighted
integral of the electric field over the area of the port ;ubsaction
set equal to one. The current on the port suﬁsectiun is proportional
to that same weighting function, the constant of proportionality being
¥y, = Jy. Thus, the denominator of the above expression is just ¥Y,,.
The input current is just the input current density multiplied by the
width of the input, aw, usually either ax or ay. Thus the input

admittance is
= 2
Y, = = (¥, aw) /Y,, = - ¥,, (aw)

In a like manner, the transfer admittance between any two ports,
say port a and port b, of an M port circuit may be determined by
Ytran = = Yap®Wad¥p
Thus, the N port admittance matrix of circuit theory is farmed
from the elements of the Galerkin admittance matrix. Simply select
all elements which lie at the intersection af any port subsection raw

and catumn. Then multiply each element by both associated port

subsection widths. Tne array of these elements will farm the ¥
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parameter matrix of the N-port. This may then be converted to Z

parameters or S parameters by the usual transformations.
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Figﬁre 3.1.

The microstrip geometry to De analyzed is realized
on a dielectric supstrate in a printed circuit
fashion ang is completely contained in a shielding,
conducting rectangular box.

S 32
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Figure 3.2.

The cooradinate system used is oriented so as to
emphasize the fact that the fields are represented
a5 & sum of hnomogenecus rectangular waveguide modes
with the waveguide propagating in the z direction.
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Figure 3.2, The rectangular (top), triangular (middle) and
piecewise parapolic (bottom) functicns used to build
expansion functions for the representation af
surface current on the microstrip metalization,



Figure 3.4,

The product of a triangle function in one direction
by a rectangle function in the lateral direction

gives a roof-top function which will be used as an
expansion function.

Figure 3.5.

Two roof-top functions placed on overlapping
rectangles give a piecewise linear appraximation to
the current in the direction of current flow.
Additional roof-top functions placed side by side
will provide a step approximation to the surface
current in the direction lateral to current flow,
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Chapter 4
EFFICIENT CALCULATION OF THE IMPEDANCE MATRIX ELEMENTS

The double summations for the impedance matrix elements require
thousands of terms before accurate results can be obtained., This
section describes a means of reorganizing the terms in the summation
which results in a significant reduction of the time required to
evaluate the matrix elements.

In addition, the summation is split into two stages. The first
stage depends only aon the shielding and substrate geometry. As long
as the shield and the substrate remain unchanged, the first stage of
the summation need not be recalculated, The number of floating point
oparations required for the first stage 1s proportional to the numper
af included modes and inversely proportional to the product of the x
and y axis resclution (Ax and ayl,

The second stage of the summation is dependent only on the
specific microstrip circuit geometry to be analyzed. The number of
floating point npératimna required for each element of the system
matrix is %nversely proportional to the product of the x and vy axis
resalutién (ax and Ay) and is independent of the number of included
modes. The microstrip circuit can be changed and only the second
stage summation need be repeated.

Typical analyses have demonstrated a twenty fold improvement in
speed for the complete analysis. If we ignore the circuit independent
first stage and since the second stage of the summation is independant
af the number of modes, we will realize an arbitrarily large relative

impravement when including an arbitrarily large number of modes.

8
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The summation is reorganized by restricting the centers of all

subsections to a Ax, Ay grid and taking advantage of the periocdicity

of the sine and cosine functions, This allows the summation, which

goes to infinity, to be reorganized into two summations. The final

summation, which is circuit dependent and contains the sine and cosine

functions, is taken over a specific finite range. This summation is

the second stage referred to above. fh& terms of this summation

themselves include summations which are takaninuer an infinite range.

These infinite summations, which are terminated at some convenient

paint, form the circuit independent first stage summation,

4.1 Initial Identities Used in the Summation Reorganization

We wish to rewrite a double summation which includes sine and
cosine functions so0 as to take advantage of the periodicities of the
sine and cosine. Before approaching that problem directly, we will
investigate rewriting some single summations. The following

identities will be useful.
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it
1]

sin(mmm, /M) = (=13 Mosin( (iMem)mmg /M) = -(=1) Mo sin{ (1M-m)mm, /M)

]
1]

cas (mum, /M) [-l]imﬂcuS{(1M+m]wm5£H} {-Il1m°cus{(1n—m}nm5fﬁ}
sin(immg) = 0 cos(imm,) = (-1)'Ma

s1n{(1+1f2}wmh}

]

o, m, even

,:_“Emc,-llfzj m, odd

(-1)Me /2 m, even

]

cus([i+1!2}nmn)

=0, m., add

The above identities can be verified by inspection or by
application of the trigonometric identities for the sum of angles.
The above fidentities applied to the three summations with which

we must deal yield the following results.

o oa
1 costmum, /M)cos (mwm, /M)f(m) = § (=12 {Mo*M depimy 4
m={ i=0

o2
+ (m, and m, even) § (-1){Me*M /2 ¢((j41/2)mM) +
i=0
Mi2-1 o )
+ 1 costmmmg/Micos(mmam, /M) § [(=1)7 (MM )6 (imem) +

m=1 i=0

=T Mot de 5 mom) ]
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o0

§ sintmam, /M)sin(mum, /M) f(m) =
m=0

oo
= (m and m, odd) § (-1)Me*M /2 ¢((is1/2)M) +
i=0
M/i2-1 ail .
+ § sintmmm,/M)sin(mam, /M) § [[-1]‘{ma+m11f£iﬂ+m] +
m=1 i=0
4 =11 Ma*M D gy Mom))

oo

} sin(mmwm, /M)cos(mmm, /M) f(m) =
m=0

(v ]
= (m, odd and m, even) § (=1){Me*M =1}/2 ¢((j41/2)M) +

i=0
Mi2-1 oo
+ 5 sintmemg/Micostmmm, /M) § [(-1)1(Mo* M) (iMem) -
m=1 i=0
- =T (Ma*M D e Me-m))

where m,i = suymmation indices.

i, =4+ 1.

Me M, ,M = constant integers.

fim) = a function of the §ummati0n index, m,

In the above equations, any summation preceded by a statement in

parentheses is performed only when the statement is true.

4.2 Rewriting the Summation

The expressions for the single summations of the previous sectiaon
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may be applied twice to evaluate desired double summations. We have

three distinct cases to evaluate:

1) The x directed electric field due to x
directed current.

2) The x directed electric field due to y
directed current.

3) The y directed electric field due to y

directed current.

The fourth case, y directed electric field due to x directed
current is the same as case 2 above.

We will restrict the centers of all subsections to a aAx, ay grid
with M ax divisions frﬂm.x=ﬂ to x=a along the x axis and N ay
divisions from y=0 to y=b along the y axis. Placing the center af the
source subsection at (x,.¥,) and the center of the field supsection at

(x,,¥,) we will define m,, m,, n, and n, with the following relations.
Kefa = My /M, x,7a = m /M, y./b = n/N, vy, /b =n,/N

We will evaluate each of the three cases in turn. In each case,
the original summation will be written followed by the reorganized

summation. The symbols used in the fim,n} functions have been definea

previously.
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CASE 1) J, = E

" X

o o
Ex = 1 cos(muwm,/M)cos{mmm, /M} § sin(nmng/N)sin(nwn, /N)f, (m,n)
m=0 n=1

- 2gre 235t
where fy . (m,n) = G, (ax)6, (ay)[N, Zp8 + NyZ7m ]
and m,, m,, N,, n, are all eaven,

Nf2-1 oo

E, = El sin{nnnﬂfﬂlsininnnlIH}jEG(Fxx(jN+n}+Fxx{j1N-n]]
n= =

o
Faye (1) =iiﬂ[fxxtin,n3+{-1meh*m=J’Efxx((1+1len,n}] +
=

Mi2-1 0o
+ ] costmmm,/Micostmmm, /M) T (f,, (iMEm,n)+f . (1, M-m,n))
m=1 i=0
CASE 2) I, % E,
o o0
Ey = Elsin(mwmhfnrcustmnmlfhr )3 cos(nune /N)sintnrn, /N)f,. (m,n)
m= n=t

where f, (m,n) = Gy (aX)6, (aYIN, N2 [ZFK - Z7n]
and m,, n, are odd and m,, n, are even,

N/2-1 % ‘
Ex = § cos(nwn,/Nisin(nun, /N) § (-113(F

o [jN+n3+nytj,N-n}}
n=1 j=0

Yy

]
Fry (N ={-1r{mh*mx'lﬁfETgnfx?[{i+1;2}M,n} +

Mf2-1 o )
+ 1 sintmwmg/Micostmmm, /M) § (=1)T(f, (iMem,n)+f
m= i=0

KytitM-m.n}}
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CASE 3) J, * E

Y ¥
[+ 1] 5 .1]
Ey = } sin(mmm, /M}sin(mrm, /M) § cos{nung/N)cosinmn, /NIf,, (m,n)
m=1 n=0
= 6. (ay) [N2Zre + Nizon]
where fyytm,n] = Gy (ax}E, lay =Zmn 1 Zmn
and m,, M, , Ng, N, are all odd.
ca N/2-1 co
Ey =jEDFyy[jN} N n§1 cas{nnnufuzcus:nnnlfw}jEO{FY?[jM+n1+FYth1N—nl}

i}
- _yylmg+my )72
Fyp(m = § (-1)!Mo*M fuy((i+1720M,n) +

i=0
Ms2=1 ) oo
+ m§1 sinlmnmhfhlsin(mwmlfMJizﬂ[fy?[1M+m,n}+ny[iiH—m,n1}

In the above equations, the summations over i and j represent the
first stage and are truncated at some convenient point. The integer
i, equals i+l and j, equals j+1. The first stage summaticons need be
done only once for a given substrate and ﬁhiald{ng geometry with the
results stored in memory. The summations over m and n are the second
stage summations. The second stage needs to be executed each time
metalization is added to the circﬁit.

Thé above equations are for the tangential E field. For a
Galerkin technique, we need the weighted integral of the E field.

This is realized by squaring each G(ax) and G(ay} function for cases I

and 3. Case 2 is modified by multipling fxy by G, {ax) and Golayl,
4.3 Application of the Discrete Fourier Transform

A& two-dimensional discrete Fourier transform imolemented using an

42
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efficient algorithm could realize the second stage summation. To do
this, select a single source point. (0One could also proceed Dy
selecting a single field point.) This single point will De viewed as
a fixed constant. The sines and cosines which are a function af the
fixed point, combined with the first stage summations now faorm the
Fourier coefficients of a sine or cosine series in two dimensions.
The series extends from m=0 to M/2-1 and from n=0 to N/2-1.

To simply apply a discrete Fourier transform, the series shouid
be extended in an odd fashion for a sine series and in an even fashion
for a cosine series with the resulting summation going from m=0 to M-1
and n=0 to N-1. The second stage of the summation can now be realized
by the application of a discrete Fourier transfarm. The transform is
with respect to the spectrail variables, m and n, to yield a sequence
dependent on the spatial variables, m, and n, for a given source
subsection (m,, n,!. A pair of two dimensional transforms {(one for x
directed fields and one for y directed fields) must be performed for
each subsection. This number can be reduced by invoking reciprocity,

Multiple application (twice for each possible source subsection)
of the discrete Fourier transform provides us with the system matrix
elements for all possible field subsections. Since a typical circuit
will use only a small portion of all possible field subsections, the
transform provides a great deal - of unneeded information. Even for
required field subsections, redundant information is calculated by the
transform due to the symmetry of the system matrix. Thus a transform
approach to the second stage may actually be less efficient than a

direct summation. Howeaver, a agistinct apportunity lies in the
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possibility of implementing a discrete Fourier transform algorithm
which does not calculate unneeded elemants and takes advantage of the
symmetry (even or odd) of the fourier coefficients. ©Such an algorithm
would have the potential of significantly improving the efficiency of
the second stage cailculation. This will be the subject of future
reseaarch.

It should be noted that the application of a discrete Fourier
transform does not_imply any approximation. In fact, in the limit, as
the first stage summation is carried to an infinte number of terms,
the transform implementation of the second stage summation provides an
exact result,

The FFT algorithm has been applied previously in the calculation

of static microstrip capacitance [42].



Chapter 5
SOFTWARE DESIGN

To date, most numarical electromagnetic software (often referred
to as ‘code’) has been written in FORTRAN, with a few programs written
in BASIC. All software used in this work has been written in Pascal,
in part, as an experiment to determine the strengths and weaknesses of
Pascal in a numerical electromagnetics environment.

The initial, and most glaring, shortcoming of Pascal is the lack
of an intrinsic complex data type. For most general programming
tasks, this is of no consequence, However, extensive use of a complex
data type is usually required in electromagnetics. BASIC, which also
lacks a complex data type, has been used in complex arithmetic. While
the programs often work very well, the source listing can be difficult
to follaow, Thus, the ease with which the software can be modified,
maintained or ported to another Sfatem is compromised,.

With Pascal, new data types can be defined. For example one
could define the COMPLEY data type as a RECORD whose first component
is a flopating point number which we can call RE, and whose second
cumnonenf is also a floating point number which we could call [M,
Than, if we declare a variable, EREL, as COMPLEX, it will have hoth a
real and an imaginary part. If we wish to refer to the complex value,
we would use EREL. To refer to the real part, we use EREL.RE, while
EREL.IM refers to the imaginary part.

Ta perform complex manipulations, one now must write COMPLEX
procegures (essentially the same thing as subroutines in FORTRAN, anly

the wora CALL is not needed to invoke the procedure). Far example,
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ane could write a complex multiply procedure which would be invoked by
writing CMULT(A,B,C), where A, B and C are COMPLEX data types. A
disadvantage here is that complicated equations must now be written as
4 series of procedure references, making it difficult to compare the
source with the original equation. This, then is a real difficulty
with Pascal. In fact, in applications requiring complex arithmetic
which can not be vectarized (as described later) apd in which the
subsequently described advantages of Pascal are not overwhelming,
FORTRAN is 1ikely to be the better language.

This difficulty with Pascal could be eased somewhat if one could
write COMPLEX functions. While this is allowed in some versions of
Pascal, it is not standard and should be avoided if it is desired to
make the software portable from system to system. This brings us to
an advantage of Pascal. S5tandard Pascal is precisely and clearly
defined. If one stays with the standard structures, plus, possibly a
few fairly standard axtensions, a highly portable program can result.
If most of the software is numerical in nature, this portapility does
not represent a strong advantage over FORTRAW as FORTRAN can be highly
portable as well. However, it is the author’'s experience that a
numerically intensive program, once reduced to practice as a quality
engineering computer ajded design program, will have two to five times
45 much source allocated to user interface as it does to the ariginal
number crunching. In such a situation, FORTRAN has very poor
portablity compared to Pascal, The reason is that there are about a
dozen different ‘standard’ FORTRANS, each standara having many

implementations, with each implementation having a wealth of
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extensions., Frequently, the extensions are too tempting to pass up,
the result being loss of portablity even if all systems were to use
the same FORTRAN standard.

A second advantage of Pascal is the wealth of data types which
are both built in and which can be constructed by the user. This has
teen used in this work in relation to the vectorization of the
saftwafe. By vectorization, we mean that data is organized in lang
vectors, the longer, the better. The advantage here is that an array
processing or parallel processing computer can very gquickly maniputate
long vectors. Thus, rather than, for example, ptacing a multiply
followed by an add ( D(I) = A(I)#B(I) + C(I1) ) in a loop and executing
the loop N times, we would do all N multiplies (perhaps in parallel],
then all N adds. In short, rather than multiplying scalars, one at a
time, we would be multiplying entire vectors all at once.

Thus our problem reduces to specifying a vector data type and
writing procedures to manipulate (multiply, add, etc.) that data type.
Note that now, Pascal and FORTRAN are at equal disadvantage. In bath
cases, we mMust now express equations as sequences of procedure calls.
chever,.Pascal has the advantage of being able to create a more
flexible (and portable) vector data type as described¢ next.

The vector data type designed for this work is a RECORD. The
record has three parts, The first part is an INTEGER which specifies
the length aof the vector. The secand and third parts are pointers. A
pointer is simply space to store a memory address. The memory
location thus pointed to will be tne beginning of an array of floating

point numbers which will form the wector. The first pointer in the
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record points to the real vector, while the second pointer points to
the imaginary part. The real and imaginary vectors are referred to as
dynamic arrays, that is, space for the arrays is allocated or
deallocated during run time, not at compile time. The pointers {which
point to the vectors) are initialized to the standard wvalue NIL
{usually 0) which means that no memory is allocated for the array.
When necessary, the software allocates memory for the vectors,
manipulates the vectors and deallocates the meﬁnry when finished,
freeing the memory for other uses,

An important advantage here, is that if there is no need for the
imaginary {or real) part in a particular problem, the imaginary (or
real part) takes no memory. In addition, the wvector procedures are
easily written so that the additional time required for a full complex
manipulation is not used when the arguments have no imaginary (or
real} parts, Thus, in the problem considered in this work, the same
software can perform a lossless or lossy analysis with Tittle
compromise.

Another advantage of Pascal which will be only briefly mentionea
is the structure and readability of the software. The group of
programming techniques generically referred to as ‘structured
programming’ are well established in the programming community.
Ignorance of such structured technigues is extremely hazardous,

Pascal not only makes possible many structured technigues (as compared
with FORTRAN), it encourages their use. Pascal also tends to be more
readable than FORTRAM. This is important in the software maintenance

area, especially if a programmer other than the arginal author is to
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maintain the software. As one example aof readability, consider an
example FORTRANW wvariable: NXP. What does it do? The Pascal
programmer would be more likely to write: Num_x_ports. MNow, even out
of context, we have some idea of what the variable does.

In the course of this work, we have only evaluated Pascal as an
alternative to FORTRAN for numerical electromagnetic software. In the
future, we also plan to evaluate C to find its advantages and
disadvantages. Our increased interest in C is due to its recently
increased availablity on personal computers,

At this point, we would recommend FORTRAN over Pascal if:

17 The programmer has an extensive installed base of
FORTRAM software,

21 If fhe software will be predominately numerical in
nature {(little user interface aor input/output).

3) The nature of the task does not justify or conform
gasily to vactor%zationi

4) The software will not be ported to different systems
{given a significant user interface).

5) Maintenance/update requirements are minimal.
We would recommend Pascal owver FORTRANW if:
1) Maintainability and partability are important issues,

2) The specific problem can take advantage of advanced

gata structures (such as is the case with
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vectorizatiaon).
3] There is going to be significant input/output or
user interface.
4) The size of the task justifies the additional work

required to develap a complex (vector) data type.

The above are, of course, 5ubjact€ve guidelines. ft is up to the
indvidual programmer faced with a specific task to evaluate the
fmportance of each guideline and to determine a weight for each
quideline. 1In fact, given a specific problem, there are quite likely
to be other factors which must also enter the objective function.

One wurd.ﬂf caution, beware advice stating that one language (or
anything else) is better than another, ‘Better’ must always be
measured with respect to the task at hand., Advice which does not take

that into consideration should be treated carefully.
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Chapter 6
SOFTWARE STRUCTURE

Several programs were written to assist in the verification of
the electromagnetic analysis. All the programs were written in Pascal
on an IBM-PC. At no time was the PC found to be lacking in memary for
the compiled source (limited to 64 K by the particular compiler being
used). The upper limit on data array size was reached several times.
with all calculations performed in double pre:iﬁicn.and with the
matrices involved being purely imaginary (no real part), it was found
that a circuit involving somewhat less than 200 subsections could be
handted on an IBM-PC with 640 K of memory.

After developing the complex vector data type, a set of
procedures were written to manipulate the vectors. These procedures
include add, subtract, multiply, divide, trig and inverse trig
functions, square root, dot product, change sign, conjugate and move,
In addition, procedures were written to perform scalar-vector
operations sich as to multiply each element of a vector by a scalar.
Another procedure was written to do a pivot (multiply a vectaor by a
scalar énd add to a second vector). Finally, procedures were written
to allocate and deallocate memary for the vectors as required.

4 program was then written to validate the procedures. This
program allows the user to exercise any of the procedures and to veiw
the results. Validating the procedures during actual use was
unacceptable.

One problem to which the programmer should give careful attention

is that tne vectors passed to these routines may not be distinct from
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each other. For example, if we want to multiply vector A by vector B
and place the result back into vector A, the multiply routine should
not use vector A for intermediate results!

A second common problem is a corrupted heap. The ‘heap’ is the
area of memory assigned to the storage of the dynamic variables (in
this case, the vectors). The pointers to vectors must be initialized
to NIL (nothing allocated) by the programmer, this is not done Dy the
compiler. If a pointer is set to NIL, the complex vector procedures
have been designed to treat the vector as all zeros. 1If one forgets
to initialize a pointer and starts to use it,. the pointer is pointing
to some random place in memory and the system will usually crash.
This can be a difficult problem to isolate.

A third problem occurs when one forgets to deallocate a vector,
say, a temporary vector used for intermediate results. Each time the
 procedure using this temporary vector is called, it will allocate a
new area of the heap for the vector. After enough procedure calls,
the heap will become full (stack-heap collisiaon) and the program will
abort. This is a particularly insidious problem on systems with
virtual.mamnry. With virtual memory, the heap never pDecomes full,
The only thing that will happen is that, at some point, the system
must initiate substantial swapping and system response time will slow
drastically.

As mentioned apove, all the complex vector procedures perform
only the necessary calculations. [If we have two real vectors tad
multioly, the muitiplies invalving the imaginary part are not

performed. A vector which is not allocated is treated as Zero.
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In addition to the vector data type, a complex matrix data type
was developed. The matrix data type is essentially a one dimension
array with each element of the array formed by a complex vector data
type. The complex vectors form the rows of the matrix. A set of
procedures was also written to manipulate the matrix data type much as
was done for the vector data type. Also a prugram_was written to
exercise the procedures for validation purposes.

The initial analysis program was used to calculate the current
resulting from truncating the modal series. It was later madified to
include electric field. The vector length for this program was the
length of the summation. Each element of a vector represented one
term of the summation. This program was set up in an "experimental’
format, that is, it was designed so that switching between various
modes of analysis (e.g., triangle versus parabolic expansion
functions) coﬁld be accomplished readily. Fast execution time was a
secondary caonsideratian,

The secand analysis program performed microstrip analysis. It
was written much as the above program with each element of the vector
rapra5eﬁt1ng one term of the summation. Elements of the system matrix
were calculated one at a time. As with the other programs described
hnere, it was written in an experimental format,.

A third analysis program alsa performed microstrip analysis. It
was written in order to check the results of the other microstrip
analysis program. S5mall discrepancies were found which were traced to
a precision problem in the calculation of Y for high oroer maodes.

This program was written with the vector length equal to the numoer of
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subsections subdividing the microstrip geometry. Each term of the
summation was calculated for the entire matrix before proceeding to
the next term.

A fourth analysis program implemented the first and second stage
summation described in the chapter on efficient calculations. All the
analysis programs give identical results.

Finally, a program was written to allow a user to graphically
define a microstrip circuit geometry with the aid of a mouse. A mouse
is a small hand sized box with buttons on the top. It rests on the
desk top (or on a special pad) and is connected to the computer. As
the mouse is moved, the cursor on the computer screen is moved. By
pressing a button on the mouse, a pop-up menu appears on the screen.
The menu may contain options like “X directed subsection’., The user
moves the cursor (by moving the mouse) to the desired option. By
pressing the button a second time, the option is selected and the
menu disappears. If ‘X directed subsection’ were selected, a mouse
button would now be defined as an ¥ directed subsection button. That
is, each time it is pressed, a subsection of ¥ directed current would
be 1aid.dnwn at the present location af the cursor.

In this manner, entire microstrip geometries can be specified.

In fact, the PC is capable of capturing very complicated circuit
geometries, much more complicated than can actually De analyzed an the
PC. This suggests that the PC would make a good ‘front end’ for a
larger system. The geometry captured by the PC could be up-loaded to
a large system for analysis. The large system need not be tied up

with data capture charas,
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Figure 6.1 shows an interdigitated microstrip capacitor whose
geometry was captured using an IBM-PC. Figure 6.2 shows a magnified
view of the same capacitor. The fingers of the capacitor have only X
directed current {(horizontal lines) while much of the rest of the
capacitor is composed of subsections which allow both x and y directed
current (both horizontal and vertical lines). The size of the circuit
(about 500 subsections) makes it far too large for a PC analysis while

it is just the right size for many larger systems,
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Chapter 7
RESULTS
To gain confidence in the analysis, several problems were
investigated in detail. First, the fields generated by individual
current patches were calculated and plotted. MNext, an open circuited
microstrip stub geometry was selected for analysis. With reasonable
results here, a second stub geometry was selected, constructed and
measured. The measurements provided excellent agreement with the
analysis once an estimate of the fringing capacitance due to the
circular coaxial aperture formed by the input SMA connector had been
included. To further check the validity, a notch was cut in the stub
midway along its length, Again the agreement between measured and
calculated data was excellent,
Details of the measurements (performed using an Hewlett Packard
8510 automated network analyzer) and the an&lyaes (all of which were
performed on an IBM-PC with numeric coprocessor) will be presented

next.

7.1 The Convolved Green’s Function

The fields generated by a point source represent the Green's
function for a given problem. In this section we will present
examples of the fields due to small rectangular patches of surface
current. These fields can be viewed as the Green’'s function canvaived
with the surface current distribution which generated the field. Wwe

do not calculate the Green’'s function itself.
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The analysis calculates the Vi, the modal coefficients, for the
desired current distribution. The resulting current and fields are
then calculated by the summations in sectian 3.1. The summations are
truncated after a specified number of modes. Modes, numbered by m and
n, are included if m is less than an upper limit and n is less than a
second upper limit. The upper 1imits are selected such that a
dimension with finer geometries will bé represented with more modes,
For example, if ax/A is half of ay/B, then the upper limit for m will
be twice the upper 1imit for n.

Analyses which selected only the lowest order (in terms of cutoff
fregquency) modes were also effected. For a given number of modes,
there was little difference in the resulting fields. This approach
required maore time (to find only the lowest modes) and the other
technique is more adaptable to the efficient calculation algorithms
described previously. Thus, the approach of finding only the lowest
order modes was not pursued further.

The geometry of the current patch to be analyzed is shown in
Figure 7.1 for x directed current and Figure 7.2 for y directed
Current.. In all subsequent plots we will evaluate the field due to
the current patch along a c¢ross section passing through the center of
the patch and paralilel to the x axis.

Most of the analyses deal with the roof-top function, Figure 3.3,
The current resulting from truncating the number of modes in the
summation is shown in Figure 7.3 for a roof-top current distribution
with the current directed in the x direction. Since the raof-tap

function has a triangle dependence in the girection of current flow,
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we see an approximation to the triangle function. The three plots
show the result of truncating the summation at 200, 1000 and 5000
modes respectively. Figure 7.4 shows the detail of the transition
into the triangle region for a 5000 mode calculation.

The x directed electric field due to the x directed current,
Figure 7.5, shows the increasing singularity of the field at points
where the derivative of the triangular current density is
discontinuous. This singularity suggests why the weighted integral of
the electric field (Galerkin technique) is desired as opposed to point
matching at the center of the patch. Again, the figure shows the
effect of changing the included number of modes,

The final figure for x directed current, Figure 7.6, shows the y
directed electric field along the same cross section. As the number
of included modes goes to infinity, these fields should go to zero.
This is indeed what appears to be happening. The peak field goes fraom
just under 4 volts per meter for 200 modes to about 0.3 volts per
meter for 5000 modes.

The next figures concern y directed current. Since we will be
taking tﬁe same cross section paraliel to the x axis, we will see the
rectangle dependence in the current density. This is shown in Figure
7.7 for a range of included modes. Note that while the approximation
improves for an increasing number of modes, the magnitude of the peak
rippte (sidelobe} shows little improvement. In fact, the peak ripple
carresponds closely to the classic 13 dB first sidelobe of the
sin(x)/x function. Returning to the transition into the triangle

region of the roof-top pulse (Figure 7.4), we note that the peak

60
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ripple is about 26 dB down from the peak current. This is similar to
the peak sidelobe of the square of the sin(xl/x function. We will
return to this topic when we discuss the parabalic pulse function.

Figure 7.8 looks at the v directed electric field., 1In the
vicinity of the patch this field shows a large and increasing value as
we increase the number of modes. What we are seeing is a broadside
view of the singularity in the electric field at the peak of the
triangle noted earlier. As the number of modes is {ncre;sed, the
singularity is more closely approximated. Again, this is why we are
interested in a weighted integral of the electric field. Once outside
the patch and away from the singularity, the electric field becomes
better behaved.

The x directed electric field due to y directed current should go
to zero along this cross section as the number of modes goes to
infinity. Ffigure 7.9 §illustrates the trend,

As menticned above, for a given number of modes the peak ripple
is about 13 aB less for a triangle than it is for the rectangle pulse.
S5ince the triangle is the convolution of a rectangle with another
rectangle, one might try convolving a triangle with a rectangle to get
a piecewise parabolic pulse. The piecewise parabolic pulse might then
have peak ripple down an additional 13 dB for a total of 39 dB down.
The advantage being realized here is that the parabolic pulse could be
more accurately approximated with fewer modes.

Figure 7.10 shows a parabolic x directed current pulse
approximated with 1000 modes. A rectanguiar dependence is used in the

Yy direction. The % angd y girected electiric fields are also shawn,
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At this scale no ripple is even seen in the current pulse; it is
well approximated with 1000 modes. Thus we might be tempted to
substitute the parabaolic pulse for the triangle pulse in our roof-tap
functions. Since the parabolic pulse can be represented with fewer
modes, we might expect a more efficient and more accurate analysis to
result. This was attempted and while the resulting analysis was more
efficient, it was not more accurate. The reason for this is that the
parabolic pulse is restricted to zZero derivative at the center and at
the ends. Since the actual current distribution on a micrastrip
circuit rarely has zero derivative at the centers of whatever small
subsections we might choose, the parabolic pulse does not represent the
actual current distribution as well as the piecewise linear
approximation provided by the triangle function. For this reason, the

parabolic pulse function was not investigated further.

7.2 Initial Open Circuited Microstrip Stub Analysis

The dimensions selected for this and the other analysis are
comparable to dimensions usually selected for "scaled" circuits,
Since, in this case, we have nothing from which to scale, referring to
these structures as scaled circuits is not appropriate. However, the
reason that these dimensions (on the order of centimeters) were chosen
is the same reason that the dimensiaons of scaled circuits are chosen:
case of construction and measurement. While the circuit in this
section was not actually built, several others were. Microstirip

circuits designed for actual applications typically have dimensians on
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the order of 1/10°" to 1/100*" of the dimensions given here, Thus
when attempting to determine the range of the analysis’ wvalidity for
actual microstrip design, the frequencies which follow should be
multiplied by a factor of 10 to 100.

The first circuit analysis was a microstrip open circuited stub..
Dimensions were set at 1.0 cm wide and 2.81 cm long. It was analyzed
inside a box 4.0 cm long, 2.0 cm wide and 5.0 cm high. The 1.0 cm
thick substrate was specified with a dielectric constant of 10.0. -The
purpose of the analysis was to check for reasonable analysis results
and to take the analysis high enough in freguency so that it would
break down.

The input impedance of the structure was calculated over a range
from 50 to 4000 MHz with the resuits presented in Figure 7.11. The
stub input impedance appears to be the classical cotangent functian.
Closer inspection shows that the impedance plot is not symmetrical
about zero, especially at the higher freguencies. This is explained,
at least in part, by the fringing capacitance between the bDase of the
stub and the adjacent sidewall,.

Anoﬁe 3.0 GHz, we seem to have taken the analysis past a point of
failure. However, when the analysis is repeated over that range with
a step of 10 MHz, rather than 50 MHz, we see that reasonable data is
still obtained, made reasaonable by thé observation that at 3.0 GHz,
the substrate is electrically about one half wavelength thick. What
we are seeing, in Figure 7.12, is a spectrum of higher orger
microstrip modes. The 50 MMz step size was insufficient to resalve

the higher order modes.
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Caution should be exercised here as the higher order modes
predicted by the analysis have not been checked for validity by
measurements. Several other stubs have been canstructed and checked

far accuracy as will be described in the next several sectians,
7.3 Microstrip Open Circuited Stub Measurements

A second microstrip stub was built and measured as well as
analyzed. This stub was 2.54 cm wide and 10 cm long contained in a
box 13.0 cm long, 7.9 cm wide and 5.0 cm high. To ease fabrication
requirements, air was used as a dielectric throughout the box.

Two measurements were made using a Hewlett Packard 8510
automated network analyzer. The first measurement was of the stub
itself. 5Since the network analyzer was calibrated using standards
external to the circuit, the measurement reference plane was just
autside the box. In order to transfer the reference plane just inside
the box, the end of the input connector was shorted to the adjacent
wall of the box with a short copper strap and a second measurement was
taken. fhe phase of this measurement was, in effect, the phase length
of the input connector.

In both cases, the magnitude and angle of the reflection
coefficient was measured. The magnitude information (which was close
to 1.0} was not used. To use the angle information, the phase length
of the connector was subtracted out. From the internal short circuit
measurement, it was determined that the connector phase length was

3.80 +/- 0.05 degrees per 100 MHz. It was later founag that a phase
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length of 3.28 +/- 0.05 degrees per 100 MHZz provided a better fit.
The difference of 0.32 degrees per 100 MHz can be attriputed to the
small inductance in the shorting copper strap. After the connector
phase length was subtracted out, the phase information was converted
to reactance and plotted.

The initial comparison between measured and calculated data is
shown in Figure 7.13. The difference between measured and calculated
increases with increasing frequency and at high impedance levels. The
direction of the discrepancy suggests that a shunt capacitance at the
base of the stub i5 unaccounted for in the analysis. This shunt
capacitance can be attributed to the fringing capacit&nce of the
circular coaxial aperture formed by the input SMA connector,

A single frequency was selected, 1.5 GHz, and the required shunt
capacitance calculated, 0.56 pF. This capacitance was then placed in
shunt with the calculated stub input impedance at all frequencies and
replotted., The result is shown in Figure 7.14. The agreement is
substantially improved, especially below 2.3 GHz. The discrepancy
above 2.3 GHz may be due, in part, to what may be viewed as the input
Cﬂnnectﬁr fringing capacitance increasing with frequency. Several

other possibilities are explored next.
7.4 Sources of Error at High Frequencies
After the above measurements had been made, it was found that the

stub (which was formed of caopper tape, cut to s5izZe with a razor knife)

was nearly a millimeter longer than 10.0 cm. To check the sensitivity
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af the calculations to a small change of length, the stub was then
reanalyzed with a length 10.1 cm, The best fit with measured data was
gbtained with a connector phase length aof 2.94 degrees per 100 MHz and
fringing capacitance of 0.67 pF. MNote that the calculated data,
Figure 7.15, now fits well to 3.5 GHz. The changes in the best fit
connector phase length and connector fringing capacitance suggest that
the evaluation of these quantities is strongly dependent on the
precise dimensions of the microstrip circuit.

A second potential source of error is in the accuracy of the
analysis itself. To check this possibility, two additional analyses
were performed. The first simply increased the number of subsections.
The original analysis subdivided the stub into 5 by 9 subsections for
¥ directed current and nearly an equal number for y directed current.
A second analysis subdivided the stub into 7 by 14 subsections for x
directed current. The results are shown in Figure 7.17. The crosses
indicate the selected fregquencies at which the more detailed analysis
was performed. Due to the time reguired to calculate each point
(several hours on an IBM-PC), the analysis was not performed at all
frequenﬁies. As can be seen, there 1s some difference at higher
frequencies, The difference is in the right direction to account for
some of the observed discrepancies.

Another possibility for error is that an insufficient number of
waveguide modes were included to properly represent the roof-top
current distribution on each subsection. To check this possibility,
the number of included modes was increased by a factor af 25. This

was dane by changing the upper limit on the first stage summation (see



Results a7
the section on efficient computation} from one term {(or ‘cycle’) to
five terms. The number of included modes goes with the sguare of that
upper 1imit. This particular analysis was for a notched stub
(discussed in a4 subsequent section), but the result still holds.
Figure 7.17 shows the two analyses and we find almost no difference
tetween the two. Thus the number of included modes appears to be a
second order factor,

A check for another kind of problem was made using this geometry.
It was suspected that there might be a numerical problem at the
resonant frequency of the empty (no microstrip circuit) box. With the
two largest dimensions of 13.33 cm by 7.257 c¢m, the resonant frequency
is 2351.79998 MHz. An analysis was performed from 2350.8 to 2353.55%
evary 30 kKHz with no numerical problem becoming evident. The
resulting input impedance was on the order of 276 Ohms and was a
smooth functiaon of fraquency.'

As mentioned in a previous section, we are using dimensjons
corresponding to a scaled circuit. Thus, for practical microstrip
design, the frequency range for valid analysis will be much larger

than that cited for the above apalysis,

7.5 Microstrip S5tub Current Distributions

The current distribution on the microstrip stub was plotted at a
number aof frequencies. The current distribution is shown conceptually
in Figure 7.18. The source current is injected (Dy a coaxial

connector penetrating the shielding box) into the base af the siub.
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From that point, the current immediately flows out to the edge of the
microstrip stub. MNow, with most of the current concentrated on the
edge of the stub, the current flows down to the end of the stub,
slowly and smoothly tapering off to zero as it reaches the end of the
stub. 5Since the current distribution is symmetrical about the center
line of the stub, the subsequent plots will show only the lower half
of the stub. To assist orientation, the edge of the microstrip stub
is also outlined in the plots,

The current distribution is indicated on the plots by a set of
arrows. The length of the arrow indicates the magnitude of the
current. There is one arrow per subsection. Since a subsection will
have either x or y (and not both) directed current, each arrow is
directed in either the x or the y direction., Since the x directed
subsections are offset by ax/2 and Ay/2 with respect to the y directed
subsections, we will find the arrows have the same offset. Any arruw1
which is less than four printer dots long is left without an
arrowhead. All subsections are plotted with at least one dot, no
matter how small their current.

Figure 7.19 shows the current distributions for frequencies from
300 MHz to 3000 MHz. At 500 MHz, we see the current injected into the
center of the stub in the upper left corner of the plat. The current
then proceeds down (and up, not shown due to symmetry) to the edge of
the microstrip stub. Then the current propagates along the edge of
the stub, slowly and smoothly tapering off to zero as it reaches the
end of the stub. AT thiﬁ freguency, the stub is a little less than

1780 of a wavelength long.
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There is an unusual tateral current near the source, It is
believed that this current is a numerical artifact due to the modeling

aof the source.

At 1000 MHz, we see much the same distribution except that the
current does not go quite as smoothly to zero. This appears to be the
result of the increasing influence of fringing capacitance off the end
of the stub. The current doses actually go to zero at the exact end of
the stub because we use a triangle dependence far the current density
in the direction of current flow and the end of the triangle is at the
end of the stub.

At 1500 MHz, the stub is now a little over one half wavelength
long. MNote that ﬁn the edge of the stub, the current reversal occurs
near the corner of the stub while on the interior of the stub, the
current reversal occurs a full subsection further down the length of
the stub.

At 2000 MHz, the current reversal has moved down the length of
the stub and the current reversal now takes place at about the same
point on both the edge and the interior of the stub.

AtIESDﬂ MHzZ, the stub is now very close to one wavelength long.
The first current reversal actually occurs before the current reaches
the edge of the stub, The second current reversal again occurs sooner
on the edge of the stub than in the interior. Also note that the
effect of fringing capacitance off the end of the stub is becoming
more pronounced.

At 3000 MHz, the effect of fringing capacitance is even more

pronouncedc. An additional effect 15 also starting to appear at this
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paint. The lateral current at the end of the stub is starting to
grow. At higher frequencies, the current will actuailly wrap around
the corner of the stub, further increasing the electrical length of
the stub,

The first current reversal on the edge of the stub has now
rounded the first cornar. The first current reversal on the interior
of the stub occurs further down tham on the edge. Surprisingly, the
second current reversal 1s aligned across the entire width of the
stub.

Figure 7.20 shows the current distributions of the same stub now
analyzed with 7 by 14 {x directed) subsections instead of the previous
5 by 9 subsections. The distributions are essentially the same as

above only represented in finer detail,

7.6 Notched Stub Measurement

The microstrip stub of the previous section was modified by
cutting a notch midway along the length of the stub. The notch was
2.0 cm fﬂng and 0.5 cm deep, changing the width of the line from 2.54
cm to 1.54 cm. Both the stub and a short circuit were then measured.
The internal short provided an estimate of 3.54 +/- 0.05 degrees/100
MHz for the phase length of the connector. The best fit between
calculated and measured data occurred with a connector phase length of
3.24 #/- 0.05 degrees/100 MHz indicating a shorting strap inductanca
of 0.30 degrees/100 MHz. This agrees well with the results from the

pravious stub (3.60 and 3.28 degrees/100 MHz).
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Figure 7.21 shows the initial comparison between measured and
calculated data with no compensation for the connector fringing
capacitance. The shunt capacitance required to bring the calculated
data in line with the measured data at 1500 MHz is now 0.29 pF. This
value is significantly smaller than the previous case. As already
pointed out, the discrepancy is probably due to dimensional
inaccuracies in stuﬁ fabrication,

The result of including the connector fringing capacitance at all
frequencies is shown in Figure 7.22. Agreement is excellent up to
2300 MH=z. Inaccuracies above 2300 MHz could be explained in much the
same manner as far the previous case.

Figure 7.23 shows the calculated data for both the notched and
unnotched stub. We see that at wvery low frequencies {(less than 400
MHz ), where the stub may be viewed as a parallel plate capacitor,
introducing the notch decreased the capacitance and made the reactance
more negative., At about 1000 MHz, we see that the first resonance has
moved lower in frequency, due to the expected inductive nature of the
narrower width in the region of the notch. We can see that at many
fr‘EQUEﬁC.iES, the differences betwean the notched and unnoatched stub
calculations, while small, are greater than the differences between
measured and calculated data in either case.

Figure 7.24 shows the current distribution an the notched stub at
various fraquencies. The current is seen to flow around the notch in
all cases. An unuJsual lateral current, smaller but similar to that in
the vicinity af the source, is also seen near the geginning and end af

the notch. The locations of the current reversals on the interior af
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the stub are also affected by the notch,

12
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Geometry of the y directed current patch used for
subseguent calculations of the resulting electric
field. The dashed line indicates the cross section
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Al) dimensions are in cm.
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(TAP) Initial analysis of an apen circuited stup
shows siginficant asymmetry in the calculated input
impedance as compared with the usual cotangent
functiaon predicted by circuit theory.

(BOTTOM) A detail of the higher frequencies of
Figure 7.11 shows what appear to be a wealth of
fiigher order microstrip moodes. We see that The
analysis is still providing reasonaole results,
once we select a freguency step size small enough
to display the detail
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calculated data, significant improvement in the

agreement between measured and calculated data
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representation provides 1ittle change in the
resulting data suggesting that the analysis has
converged. The small changes at higher frequencies
are in a direction to reduce the differences between
measured and calculated data in Figure 7.14,
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Figure 7.18. Conceptual representation of the current
distribution on a stub. The current is injected
into the center of the stub by the connector. The
current then flaws immediately to the edge of the
Stub then propagates down along the edge smootnly
going to zero at the end of the stub.

8BS



4 OPEM CIRCUITED STUB CURRENT DISTRIBUTION -- 3588 MHZ
I
{
i
¥icn) | '
3'_ — =t — = = - L
1
L ——— B — —— i — ot i - -
|
2 8 2 8 i@
¥icm)
NONOTAR . JS
4 QPEM CIRCUITED STUE CURREMT DISTRIBUTION -- 1888 MHZ
|
¥icm)
SR |
U S
ir i
i i
i 1
i
|
21 . 1 1 1 i
"] 2 8 1@
X{cm)
NOMOTAR. JS
" OPEM CIRCUITED STUB CURRENMT DISTRIBUTION -- 1580 MHZ
f ]
i |
!
!
|
¥(cm) I I '
i - _ — . — — — =
3_
i
(o |
L] ]
| — — i
U !
i !
'} 1
; !
.| , —
a8 2 4 ia
Kicm)
NONOTAC. JS

Figure 7.19,

Stub current

gistribution {part

11,

B6



OPEN CIRCUITED STUB CURRENT DISTRIBUTION -- 20888 MHZ

4
Yicn) { '
3 - i - - = A== = A L
i
|_' [ ey = o Ao e S e
z L 1 L L L 1 'l i
'] 2 Lom g 18
[
MHOMOTAD . JS
. OPEN CIRCUITED STUE CURRENT DISTRIBUTION -— 2508 MHI
Yicm) i '
3 - b o =y - - o e —_— —_—
z 1 L L L i L £ ] 1 Il
8 2 g i@
¥icw)
NOMOTAE, JS
: OPEN CIRCUITED STHE CURRENT DISTRIBUTION -- 3088 MHZ
—_—qI e - - = - +
Yicw) | | '
i
3 - - e Lo — - — — —
| i
o
| |
. e —— e = - s ey . l
i
2 : : .
"} . B i@
MKicm)
HOMOTAF. JS

Figure 7.19,

Stub current distribution

(part 2.

87



. OPEN CIRCUITED STUB CURRENT DISTRIBUTION -- S8 MHZ
1
Vicm) '
= —_ — 5 - E - -+ - -
3 i_ — —_— — = - - - - - - -
|| b et o e — —+ - — - - - -
2 L 1 1 1 L L L
@ 2 & 8 18
X{cnl _
DETAILAA. JS
s OPEN CIRCUITED STUB CURRENMT DISTRIBUTION -- 1090 MHZ
!{ﬂ!} — - — s — — — - - - -
i
af |
- — —t ==l — = — o -+ -+ -
2 2 é . -
8 i@
DETAILAB, JS Xlow)
" OPEM CIRCUITED STUB CURRENT DISTRIBUTION -- 1508 MHZ
1 i
!
: |
__Iq [ - - &= e - - - - - ]
L , i
Y{cm) i
—_ - - —_— g — — — — — - - i |
{
3 |
i - g e — — = - — = = |
| |
| !
L - = — e i
I
i |
| [
| . , ) . . , |
2t .
4 2 4 & g 1@
Kicm}
DETAILAC, JS

Figure 7.20.

Stub current distribution (part 11}.

88



OPEN CIRCUITED STUB CURRENT DISTRIBUTION -- 2000 MHZ

4
nd ) I '
Ylcm) — - - - - - - - —_ — i = - -
Ik
— - 4 - - - - = = - = = -
e e - - - P T e
z 1 1 1 il A i i I 'l 1
8 2 8 i@
¥(cm)
DETAILAD.JS
OPEM CIRCUITED STUB CURRENT DISTRIBUTION -- 2388 MHZ
e - - - - - - - - - — -+ - -
- l ,
Yicm) L —_— = = - - . - - — o et —
i
ir
i — —_— — e - - - —_ —u —— — - — f
N
| e e g it b . — e e e s Ii
| i
z 'S 'S 1 1 1 H e L I i |
a . 2 4 [ 8 i@
Micm}
DETAILAE. JS
. OPEN CIRCUITED STUB CURRENT DISTRIBUTION -- 3808 MHZ
i 1
| ]
I i
= h ! . j
Yicwu) ' - - - - - ™ - - - - - i ‘
ik o
! = - - - - * -+ -+ - -+ + | :
! l |
Ii - . J— ey [
i_ = — —_— — —_ - —_— b | II
| ' |
*- |
{ i
i ) , . , !
g’ - : :
d a 4 [ 8 i@
Kicm)
DETAILAF. JS

Figure 7.20. Stub current distribution (part 2.

89



20 CALCULATED US. MEASURED FOR MOTCHED STUB, MO COMMECTOR CAPACITANCE
T Stub 1@w2.54 om ). Meas. Dashed . :
:  Motch 2x8.5 cm ) Cale. Solid
Input i
mt' . e TrimmrmrETey i
{Ohms } .
@
-2o@
MEAS-Z2. 04T E59B.DAT

Figure 7.21. Measured versus calculated data for the notched
microstrip stub before input connector fringing
capacitance is included.

268
R T T st‘* 1 . * n“.
U A gﬁg i~
T Syw. placed
“m ..... rar -
Beact: oo ghosbecicieinnn
COhs) |l
8
-284d

"] 1
Meas-z2.dat ES9ch.dat

Frequency

Figure 7.22. The calculated and measured notched stub data
agree well once the input connector fringing
capacitance is included.

90



a1

TCHED STUB CALCULATED INPUT IMEPDANCE

tch 2xd.5cm !

NOTCHED UERSUS UNMO
. i
| Stub 1@x2.54cw |

-~

.. Dashed - Notched

- Solid - Unnotched | .
_ yn. placed

-208

Figure 7.23.

The notched and unnotched stub calculated data.
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Chapter B
CONCLUSION

We have described a technique for the electromagnetic analysis of
shielded microstrip circuits. The technique consists of subdividing
the microstrip metalization into small rectangular subsections. There
is one set of rectangles for x directed current and a second, offset,
set of rectangles for y directed current. A ‘roof-top’ distribution
of current is assumed in each rectangle. The magnitude of the current
on each rectangle is adjusted so as to meet boundary conditions (zero
tangential electric field) on the metalization. Once the currents are
determined, the problem is solved and the N-port circuit parameters
follow immediately. The electric fields due to current in each small
rectangle are determined by expanding the fields as a sum of
rectangular waveguide modes. This representation of the fields is
closely related to the spectral domain approach.

The technigue has been 1mplemﬂntéd in Pascal an an [BM-PC with an
8087 numeric coproccessor., Pascal was selected for its structure,
maintainability and portability., The software makes extensive use of
advanced data structures such as records, dynamic arrays, pointers and
linked 1ists. The software is heawily vectorized s0 as to quickly
take advantage of any array or parallel processing capability which
may become available. The existing software is capable of the
analysis of small circuits (10 to 20 subsections} in several minutes,
while larger circuits (100 to 200 subsections) require several hours
per frequency. There is still considerable room far improving the

efficiency of the software. In adgition, & mouse based data cap.ura
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program has been written which allows the specification of complex
microstrip geometries graphically,

Two micrastrip circuits have been built, an open circuited stub
and a notched open circuited stub. Both stubs were 10 cm long and
2.54 cm wide. The large dimensions were chosen to ease fabricatiaon
reguirements and to miﬁimize measurement errors. Both circuits were
measured on an HP8510 automated network analyzer. Comparison of
computed results with the measurements shows a high degree of
accuracy.

This analysis is initially expected to be useful in the creation
of data bases of S-parameters of specific microstrip discontinuities.
The effect of the port connecting tran#missiun lines can be removed by
the analysis of appropriate shorted microstrip stubs. This is a task
which, for many discontinuities, is even within the capability of the
IBM-PC.

As fast computers become more avaijilable, it is not unreasonable
to consider the analysis of entire microstrip circuits. [t is with
this application in mind that the software was vectorized. With array
prucesﬁiﬁg or parallel processing machines, the analysis of circuits

containing several thousand subsections bacomes a real passibility.
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