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Deembedding the Effect of a Local Ground Plane
in Electromagnetic Analysis

James C. Rautio, Fellow, IEEE

Abstract—In electromagnetic analysis of complex planar cir-
cuits, it may be necessary to use internal ports, e.g., in locations
where surface mount devices might later be attached. These
internal ports require a local ground plane for ground reference
when access to the global ground reference is unavailable. Even if
perfectly conducting, use of such a ground plane still introduces
excess phase in the local ground currents. This paper describes
how to remove the effect of a lossy or lossless local ground, even
including multiple closely spaced ports.

Index Terms—Calibration, deembedding, electromagnetic anal-
ysis, imperfect ground, low-temperature co-fired ceramic (LTCC),
planar circuit, surface mount device (SMD), surface mount tech-
nology (SMT).

1. INTRODUCTION

OST high-frequency and microwave circuit analysis

makes use of ports and nodes. A port is two terminals,
one terminal arbitrarily designated as the “signal,” the other
arbitrarily assigned to be the “ground.” The port voltage is the
difference in voltage between the two terminals. There is no
inherent requirement that any one ground terminal be at the
same potential as any other ground terminal.

The concept of a node is used in nodal analysis. The voltage
of each node in a circuit is referenced to a single common global
ground. Nodal analysis is commonly used to analyze intercon-
nected systems of N-port devices. This is possible when all
port ground terminals are connected to the same global ground.
Thus, the port voltage is identical to the node voltage in nodal
analysis. This allows N-port devices to be freely incorporated
into a nodal analysis of the complete system. It is upon this prin-
ciple that modern high-frequency and microwave circuit anal-
ysis is based.

However, due to the increased complexity of microwave cir-
cuitry, access to, or even the existence of a global ground cannot
be assured. For example, surface mount devices (SMDs) [also
known as surface mount technology (SMT)] are in common use
on multilayer planar circuits including low-temperature co-fired
ceramic (LTCC). With 12 or more layers, the top surface of an
LTCC circuit is a considerable distance from any ground plane
that might exist at the bottom. The SMD components mounted
on the top surface do not have (and do not require) access to the
global circuit ground.
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Advanced LTCC circuit with topside internal ports for numerous

Fig. 1 shows an example LTCC circuit. The light top-side
metal represents attachment pads for numerous SMD compo-
nents. Several of the SMD local grounds and local ports are indi-
cated. The complex interconnections beneath the local grounds
do not allow access to the global ground.

The result of electromagnetic analysis is an /NV-port device
(usually scattering, or S-parameters as a function of frequency).
As in the LTCC example above, the SMD themselves are typ-
ically not included in the electromagnetic analysis. Rather, in-
ternal ports are located at the SMD pin locations so that modeled
or measured data for the SMD can be connected into the LTCC
circuit later using nodal analysis.

The problem is that these internal ports have no access to
global ground, but nodal analysis requires all nodes to be ref-
erenced to global ground. A partial solution is to provide the
SMD internal ports with a local ground and then to prohibit any
later nodal analysis connections between any nodes referencing
different grounds, global or local. Connections may be made
between nodes referencing the same local ground, and between
any nodes referencing global ground, but not between local and
global ground referenced nodes. In fact, assigning one ground
to be local and another to be global is itself arbitrary. In reality,
all grounds are local.

Even a perfectly conducting ground introduces delay in the
ground return current. This delay, and loss if present, modifies
the N-port S-parameters. If one has access only to the N-port
current and voltage information, there is no way to differen-
tiate between the effect of the ground and signal current paths.
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Fig. 2. Local ground deembedding standard for two local ports includes
transmission lines connecting the local ports to the box sidewalls. The box
sidewall ports are then deembedded and their reference planes shifted to their
mating local ports. A negative number on an internal port indicates positive
current flows to the left.

From the viewpoint of the N-port data, either the arbitrarily
assigned ground or signal path can be considered lossless and
delay free, with all the S-parameters determined by the other
path, and exactly the same S-parameters result.

The reality that the ground current experiences delay, and
may have loss, is not of concern for nodal analysis, as long as
the voltage difference between different ground terminals is of
no consequence, as in a cascade of lossy transmission lines.

When measuring an SMD, the effect of the actual ground cur-
rent delay and loss is included in the SMD N -port data. When
using a local ground in electromagnetic analysis, the effect of
the local ground current is also included. Since the SMD mea-
surement already includes the effect of the actual ground, we
must identify and remove the additional effect of the local elec-
tromagnetic analysis ground if we are to achieve an accurate
analysis.

In addition to the effect of the local ground, there are also
fringing fields surrounding each SMD port and fringing field
coupling between each port. Since the SMD measurement
already includes the actual port discontinuities, the complete
coupled N-port discontinuity present in the electromagnetic
analysis must be removed.

Finally, there is coupling between the local electromag-
netic analysis ground and the global ground. Since the actual
SMD-to-global ground coupling is already included in the
SMD measurement, the electromagnetic local-to-global ground
coupling must be removed as well.

Exactly characterizing and removing the entire effect of the
local ground is the topic of this paper. We refer to this deembed-
ding algorithm as general local ground (GLG) deembedding.

II. LocAL GROUND CALIBRATION STANDARD

The electromagnetic analysis used in this study [1], [2] makes
use of a “double delay” [3] deembedding algorithm for sidewall
ports (ports 3 and 4 in Figs. 2 and 3). The double delay is the
first application of modern microwave measurement calibration
techniques [4] to electromagnetic analysis. The double-delay al-
gorithm is closely related [5], [6] to the short-open-calibration
(SOC) deembedding algorithm [7], [8]. This type of deembed-
ding uses a perfect ground (real or virtual) for establishing a
perfect (to within the numerical precision used) ground refer-
ence for sidewall ports. The deembedding additionally (and op-
tionally) transfers the perfect ground reference to the interior

Fig. 3. Equivalent circuit of the two-port local ground deembedding
calibration standard shows the local ports 1 and 2 polarized so that positive
current flows out of the local ground G,,. Ports 3 and 4 are sidewall (external)
ports and are polarized so positive current flows out of the sidewall (global)
ground.

of the box along a uniform port connecting transmission line by
shifting the reference plane. Establishing this perfect ground ref-
erence at the local ports of the GLG calibration standard (ports 1
and 2 in Fig. 2) is critical in achieving full accuracy for the com-
plete GLG deembedding. For this first tier deembedding, only
algorithms such as SOC and double delay, which use a perfect
ground reference, are recommended.

The circuit for the local ground calibration standard (Fig. 2
and 3) shows the deembedded sidewall ports (3 and 4) shifted
up to the local ports (1 and 2). There is zero impedance between
the signal terminal of each sidewall port and its mating local
ground port. The sidewall port ground terminal is connected to
global ground. The local port ground terminal is connected to
the local ground.

Notice that the local ports (1 and 2) cannot be treated as single
nodes. If this circuit is to be analyzed with nodal analysis, six
nodes are required. Unfortunately, the full six-node information
is not available. The electromagnetic analysis provides informa-
tion only about the difference in voltage between the two termi-
nals of a local port; we do not know the voltage between each
terminal and global ground.

The direction of positive current for the local ports in circuit
theory (Fig. 3) is away from the local ground (G,), as indi-
cated. In contrast, the direction of positive current in an electro-
magnetic analysis depends on the physical direction. In Fig. 2,
the electromagnetic analysis has positive current flowing to the
right. In Fig. 3, port 2 has positive current also flowing to the
right, so there is no problem. However, port 1 (in Fig. 3) must
have positive current flowing to the left. To change the direction
of positive current for port 1 in the electromagnetic analysis to
match circuit theory, we just change the sign of the port to —1.
This makes the positive current direction for both the circuit of
Fig. 3 and the electromagnetic analysis of Fig. 2 the same. If
this is not done, then transmission .S-parameters are shifted in
phase by 180°. For this electromagnetic analysis, as displayed
in Fig. 2, all ports on the left and top sides of a local ground
must have their sign changed.

The Y -parameters of any N -port are determined by placing
a voltage source on one port, short-circuiting all other ports,
and evaluating the resulting current. This can be done even
when some of the ground terminals are not connected to global
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Fig. 4. For direct deembedding, the cascading parameters of the embedded
DUT are multiplied by the deembedding adapter cascading parameters, thus

deembedding the embedded DUT.
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ground. For the circuit of Fig. 3, the Y -parameters are shown
in (1) at the bottom of this page.

The Y -parameters for more than two local ports are straight-
forward with some of the terms in (1) becoming sums. The
schematic and (1) are for real conductances to simplify presen-
tation. In general, all terms are complex. We use the symbol G
to indicate lumped elements and Y to indicate matrix elements.

With knowledge that the signal path for this circuit is lossless
and delay free (i.e., the signal terminals of ports 1 and 3 are
shorted together, and ports 2 and 4 as well), we conclude that
all the N-port data is due to the local ground.

We can consider G, to be the local ground, G, to be the
self-fringing fields of each port, G, and G to be the port-to-port
fringing field coupling, G to be the local port ground terminal
and local ground body to global ground coupling, and G4 to
be the port signal terminal coupling to global ground. Linear
combinations of the Y -parameters of (1) uniquely determine all
of the elements in Fig. 3. Thus, the local ground is characterized.

III. DIRECT LOCAL GROUND DEEMBEDDING

Once the discontinuity to be deembedded is characterized,
it can usually be removed by converting to cascading (e.g.,
ABCD) parameters and inverting. This yields the “deembed-
ding adapter.”” The deembedding adapter cascading matrix is
multiplied by the cascading matrix of the device-under-test
(DUT). In this case, the circuit to be deembedded, as in Fig. 4.

Cascading matrices must be square and have an even number
of ports. In the illustrated case, for one local port, the deembed-
ding adapter has two ports and, thus, a 2 X 2 cascading matrix.
However, the DUT can have any number of ports, one or more.
In addition, the DUT may have an odd number of ports. Thus, it
might appear that we cannot use cascading matrices to connect
the deembedding adapter to the embedded DUT.

We might be tempted to calculate the deembedding adapter
and then somehow apply nodal analysis to connect it to the DUT.
This is impossible because, as mentioned above, nodal analysis
assumes the voltage of each node is referenced to global ground.
We do not have this information for the local ports.

Fig.5. Both the embedded DUT and deembedding adapter have supplemental
ports added to allow any number of DUT ports. The DUT supplemental ports
are effectively open circuited when S-parameters are calculated.

Thus, we return to cascading matrices. If we modify both the
embedded DUT and the deembedding adapter, we can form two
square matrices with an even and equal number of ports.

This is done by adding supplemental ports to both the em-
bedded DUT and the deembedding adapter as needed (Fig. 5).
Ports are added to the DUT by using nodal analysis to connect
a resistor (any nonzero value, 1 {2 shown) from an existing port
to the added supplemental port. A —50-2 resistor is then added
from the supplemental port to ground. After deembedding and
conversion to S-parameters, the —50-§) resistor combines with
the 50-€2 resistor terminating the supplemental port in the .S-pa-
rameter definition. This leaves the supplemental port open so
that it has no effect on the other S-parameters.

When the number of external ports is less than the number
of local ports, then supplemental DUT ports must be connected
to one or more local ports. Supplemental ports so created by
nodal analysis are also local ports, and no special nodal analysis
consideration is needed.

The deembedding adapter is supplemented by adding through
connections until the required number of ports is realized. After
the matrices are multiplied, all DUT supplemental ports are ig-
nored, and the effect of the local ground is removed from the
DUT.

It would seem the deembedding algorithm is complete, except
for one final problem. If the local ground is floating, and G,
of Fig. 3 become small (typically at low frequency), then the
cascading parameters become poorly conditioned. A simple
solution for this problem is to require some kind of physical
attachment from local ground to global ground. The attachment
can be minimal, high resistance and reactance, as long as it
keeps G. from going to zero.

The fact that a nonsingular solution exists is seen by noticing
that the Y -parameters corresponding to the inverted cascading
parameters are those of (1) with a sign change. With this change,

Gp+Ga1+Ge1+ G -G, —(Gp+Ge1+Gh2) Gp+Gi2
v = -G, Gp+Gaa+Gea+Gu Gp+Gp —(Gp+Gea+Grr)
= | =(Gp+Ga+G2) Gp+Gun Gp+Gr1+Gea+Ga1+Gra+Ger2 —(Gp+Gr1+Gra+Ger2)
Gp+Gha —(Gp+Goa+Gh) —(Gp+Gp1+Gp2+Ger2)

Gp+Go2+Gea+Gap+Gpi+Gern 0



RAUTIO: DEEMBEDDING THE EFFECT OF LOCAL GROUND PLANE IN ELECTROMAGNETIC ANALY SIS 773

O » O---O O
LSO i I Rg} i CL3 OR3
c>J ) 00 +—0
L2 j j RZ 12 L R2
O \L O--O O
Embedded De-embed
DUT Adapter
O —L O---O J_ O
L1 I R 1 OR1

Fig. 6. By connecting both the embedded DUT and the deembedding adapter
in a double-port configuration, the overall cascading matrices become well
conditioned even when the local ground and global ground are completely
isolated.

all the positive conductances of Fig. 3 become negative. When
the circuit of Fig. 3 is cascaded with a mirror image of itself,
with all the conductors negative, it is seen that the local ground
is not reduced to a perfect short circuit. Rather, the local ground
becomes an open circuit and is completely removed from the
circuit. The perfect zero-delay zero-loss signal path of the deem-
bedding adapter takes its place. At least graphically, we see that
zero G, does not cause any fundamental problem. A solution
must exist that does not involve singularities.

IV. DOUBLE-PORT DEEMBEDDING

To avoid poorly conditioned cascading matrices, we connect
the embedded DUT and the deembedding adapter in a double
port configuration (see Fig. 6).

Each port of the original N-port is connected to two ports,
one on either side. In Fig. 6, each of the six labeled ports are
drawn as single ports. In general, each illustrated port repre-
sents multiple ports. The number of L1-R1 ports is equal to
the number of local ports. The number of L2—R2 ports is also
equal to the number of local ports. The number of L3—R3 ports
is the number of external DUT ports (i.e., all DUT ports, except
local ports).

The total number of ports is twice the number of DUT ports
plus twice the number of local ports. After cascading, all ports,
except R2 and R3 are terminated in open circuits. Ports R2 and
R3 then represent the deembedded DUT.

If ABCD cascading parameters are used, conversion to
S-parameters is usually realized by converting first to Y- or
Z -parameters. However, a common test is to deembed the cal-
ibration standard. In this case, there are open circuits between
local ports. This results in undefined Z-parameters. There are
also short circuits between the sidewall and deembedded local
ports. This results in undefined Y -parameters.

In order to successfully deembed the standard, the
ABC D-parameters can first be converted from current/voltage
to incident/reflected waves, and then to S-parameters. Y- or
Z-parameters cannot be intermediate results.

Rather than convert to wave variables after cascading, we
work with wave variables throughout. The wave-variable equiv-
alent of the cascading matrix is R-parameters [9] as follows:

b1 _ Ri1 Ry a2
|:a1:| N |:R21 Rzz} [bz} @

where a; are incident wave amplitudes and b; are reflected wave
amplitudes. For more than two ports, a; and b; become vectors
and I;; become matrices. Conversion from S-parameters is

R Si2 — 81185 S22 S1155; 3)
= — 55155, St

This conversion is more easily realized for N ports by first
swapping the right N/2 columns with the left N/2 columns.
Then perform a partial matrix inversion, solving only the last
N/2 rows. Gaussian elimination routines are easily modified to
do a partial solve. Such routines usually have an integer array
that keeps track of which rows have been solved. To solve the
last N/2 rows only, initialize that array to indicate that the first
N/2 rows have already been solved. To convert from R- back
to S-parameters, reverse the steps. Do a partial solve on the last
N/2 rows, and then swap columns. Alternatively,

[ ~RilRe Ry “
R22—R21R1_11312 E

[t

In order to insert the deembedding adapter into the double-
port connection of Fig. 6, we must first determine the S-param-
eters of the deembedding adapter. Normally, one would convert
the S-parameters of the calibration standard to cascading pa-
rameters, invert the cascading parameter matrix, then convert
back to S-parameters. However, we cannot use cascading pa-
rameters (neither R, nor ABC D) for this task due to the prob-
lems with poor conditioning when G of Fig. 3 becomes small.

Prior to deembedding, the Y -parameters of the calibration
standard still exist. Thus, we convert to Y -parameters and then
change the sign of each Y -parameter. We then convert back to
S-parameters. This process converts the S-parameters of the
calibration standard into the S-parameters of the deembedding
adapter without using cascading parameters.

The S-parameters for the deembedding adapter inserted into
the double-port connection on the right-hand side of Fig. 6 are

bLl Sil 512 01 + Sil 512 0 ar1
bro So1 Sy 0 Sy 1+85 0flare
bL3 _ 0 0 0 0 0 1 ars
br1 14+ Sil 512 0 Sil 512 0||lagry
brs Sél 1+ Séz 0 Sél SQQ 0||agre
brs 0 0 1 0 0 0llags
(%)

Asin Fig. 6, each of the indicated ports may actually represent
multiple ports, making each matrix element above into matrices
themselves.

Sl{j are the S-parameters of the deembedding adapter with
an additional 50-2 resistor connected from each port to ground
[see Fig. 7(a)]. This provides all the S-parameters in (5), except
the terms like 1 4+ S/,.

One such term is Sgy, 1. This term is determined by a source
on port L1 generating a wave exiting port R1 with all ports ter-
minated in 50 €. The deembedding adapter places a shunt ad-
mittance across the L1-R1 through line, as shown in Fig. 7(b).
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Fig. 7. Adding shunt 50-€2 resistors to each port of the deembedding adapter:
(a) allows calculation of most of the double-port S-parameters. The remaining
S -parameters require consideration of the .S-parameters of (b).

Given the shunt admittance (which, in general, is a matrix) Y,
we are interested in Sa; of the circuit of Fig. 7(b) as follows:

2
So1 = m (6)

The shunt admittance is the input admittance of the two-port
of Fig. 7(a) with the extra 50-€ resistor on the input removed as
follows:

_1-8, -
1+ S

Substitution of (7) into (6) yields the desired S-parameter
for (5). These 1 + S/, terms cause the double-port connected
deembedding adapter cascading matrix to be well conditioned
even when the deembedding adapter cascading matrix itself is
not.

In a similar manner, the DUT is inserted into a double-port
connection, as shown in the left-hand side of Fig. 6. The only
difference is that the external port related S-parameters are in
the third and sixth rows and columns. The second and fifth
row/columns are filled with zero and unit matrices.

Once the double-port DUT and deembedding adapter .S-pa-
rameters are complete, they are both converted to R-parameters
by (2) and multiplied in either order. The result is then converted
back to S-parameters by (4). Finally, all ports, except R2 and
R3, are terminated in open circuits. If we order and partition
the resulting matrix so that all the R2 and R3 ports are together
in the last row/columns in the matrix (S55), we have the deem-
bedded DUT as

-1
SPUT = 834 (1—871) " Sib+ S5 ®)

where S;} is one component of the partitioned double-port ma-
trix, and SPUT is the desired deembedded DUT.

V. VALIDATION

As mentioned above, an easy initial test is to deembed the
calibration standard. The double-port deembedding yields a
zero-loss zero-delay (to within numerical precision) multiport
through in all cases tried.

The next test is to use as a DUT the calibration standard mod-
ified by setting the sidewall port reference planes to zero length.
With this modification, the DUT now includes the transmission
lines connecting the sidewall ports to the local ports. This allows
us to deembed a DUT different from the calibration standard,
providing a more rigorous validation.

0 s—————.
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Fig. 8. Deembedded DUT compares well with a reference 3.0-mm-long line.

The comparison with the embedded DUT shows the effect of deembedding the
local ground.
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Fig. 9. In spite of using a lossless local ground in one case and a 10-k{2
per square local ground in another case, deembedding the local ground yields
S-parameters that are identical to within the noise floor of the underlying
electromagnetic analysis.

For this type of validation, we use the calibration standard of
Fig. 2. The transmission line is 0.5-mm wide, the port 1 con-
necting line (left side) is 1.75-mm long, the port 2 connecting
line is 1.25-mm long, and the local ground (near the center) is
1.0-mm long. The substrate has a relative dielectric constant
of 10.0 and is 0.25-mm thick. There are 25 mm of air above
the substrate. The box is 4.0 X 2.0 mm and is divided into 64
cells along its length and 32 cells across its width. The circuit is
lossless.

The DUT is the same as the calibration standard, except the
reference planes are set to zero length. After deembedding, the
local ports are shorted together using nodal analysis. The results
(Fig. 8) are compared to an electromagnetic analysis of a sim-
ilar line with the local ground removed; the line is 3.0-mm long.
There is some difference at the high end of the frequency range;
this is due to the difference in box length in the DUT and the
reference circuit. To show the effect of deembedding, the em-
bedded DUT with local ports shorted together is also shown.

To provide an exact test of validity, we analyze this same
DUT for two different local grounds. The first local ground
is as above and is lossless. The second has only the local
ground resistivity changed from 0 to 10 k2 per square. While
this is a radically different local ground, it should give the
same answer after deembedding. Fig. 9 shows the magnitude
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of the vector difference between the resulting S-parameters
(S11 and So; difference averaged).

In spite of the extreme difference in local grounds, the differ-
ence in .S-parameters shows the noise floor of the deembedding
procedure to be about the same as that of the underlying elec-
tromagnetic analysis, in this case, approximately —160 dB.

If the test of Fig. 8 is repeated using the embedded 10-k(2
local ground DUT (no GLG deembedding), an open circuit
results.

VI. FAILURE MECHANISMS

The double-port GLG deembedding fails if the first tier deem-
bedding, removing the local-to-sidewall port connecting lines,
fails. The well-understood failure mechanisms of the first tier
deembedding occur when the port connecting lines allow more
than one propagating mode, and when the reference plane is so
short that the fringing fields from the ports at each end interact.
Good microwave design avoids the first failure mode. Keeping
reference planes and port connecting line lengths longer than
one or two substrate thicknesses or line widths (whichever is
shorter) is usually sufficient to avoid the second failure mode.
In addition, the first tier deembedding fails when box resonances
are excited.

The double-port GLG deembedding can tolerate very high re-
sistance ground planes, but does fail if the ground resistance is
too high. This is typically not a consideration unless the local
ground is several electrically noncontacting areas. In this case,
a low-frequency failure is seen as the coupling between the dis-
joint areas becomes small.

As mentioned above, GLG deembedding requires an essen-
tially perfect short circuit in the calibration standard between
the sidewall and local ports. To test the degree of sensitivity,
we intentionally set the sidewall port reference planes back
0.0625 mm from the local ports (1/8th of a linewidth, one
cell length) and repeated the deembedding using this “bad”
calibration standard. The validation test of Fig. 8 was repeated.
The general shape of the S1; curve is the same; however, the
entire response is stretched up in frequency. For example, the
zero at 18.5 GHz moves up over 5% to 19.5 GHz.

The GLG deembedding fails if the local ground current due
to coupling with the DUT (not accounted for in the calibration
standard) becomes large compared to the other local ground cur-
rents. This is not a problem for typical fringing field coupling;
however, if the DUT is electrically connected to the local ground
in a manner not included in the calibration standard, then the
deembedding can fail. This is because the DUT has significantly
changed the local ground making the calibration standard inap-
propriate for the DUT.

The deembedded DUT local ports are typically referenced to
global ground. However, if the local ground currents induced
by coupling from the DUT (not present in the calibration stan-
dard) become stronger than the local-to-global ground coupling
(G in Fig. 3), then the DUT local ground is no longer attached
to global ground. Even so, it still behaves as a perfect floating
ground. If it is desired to have the local ground referenced to
global ground, then one can supplement GG, with an additional
physical connection to the global ground. This would be re-
quired only if it is desired to make nodal analysis connections

Magnitude S3_10 (dB)

_ I ! 1
1200 2 4 6 8 10

Frequency (MHz)

Fig. 10. Poorly conditioned cascading matrix used in the direct GLG
deembedding sometimes results in noisy data, unlike the double-port GLG
approach. Note the very low frequency.

between the local ports and any external ports, which is a rare
situation.

As mentioned above, the direct GLG deembedding can fail
when analyzing a floating ground. This is due to the poorly con-
ditioned cascading matrix. We have not explored this problem in
detail; however, we do know that the problem increases in mag-
nitude when there are a large number of ports. It is also most
prominent at low frequencies. The most peculiar aspect of the
problem is that it can be clearly present in some S-parameters,
but not at all in others, all in the same analysis. We have found
no pattern or explanation for this.

To illustrate the problem, we modify the DUT used in
the above validation tests by adding six through lines, each
0.125-mm wide, separated by 0.0625 mm, three on each
side. The resulting 16-port DUT is deembedded by both the
double-port GLG and the direct GLG. All the double port data
and approximately 80% of the direct deembedded data are
good. The rest of the direct data are noisy at low frequency. The
direct data are either noisy or smooth, and there does not seem
to be any kind of transition between the two states.

In Fig. 10, the same S-parameter is shown in both cases, one
calculated using the double-port GLG and the other using di-
rect deembedding. They both use the same DUT and calibration
standard data. Note the low-frequency range.

Fig. 10 shows S3 19. A similar plot of Sig3 shows good
data, further suggesting the noise is a numerical artifact of
the poorly conditioned cascading matrix. It is possible that
a carefully designed matrix solve and matrix multiply could
reduce or eliminate the noise, especially if it is specialized to
symmetric matrices. However, the preferred solution is to avoid
the problem completely by using the double-port approach to
GLG deembedding.

VII. CONCLUSION

A GLG deembedding procedure that provides complete char-
acterization of a local ground and the removal of its effect from
electromagnetic analysis data has been presented. This tech-
nique is useful when combining electromagnetic and nodal anal-
ysis for the analysis of SMDs on multilayer planar circuits.
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